Friday, December 27, 2024
Google search engine
HomeLanguagesMatplotlib.pyplot.semilogx() in Python

Matplotlib.pyplot.semilogx() in Python

Data Visualization Is an important part of analyzing the data as plotting graphs helps in providing better insight and understanding of the problem. Matplotlib.pyplot is one of the most commonly used libraries to do the same. It helps in creating attractive data and is super easy to use. 

Matplotlib.pyplot.semilogx() Function

 This function is used to visualize data in a manner that the x-axis is converted to log format. This function is particularly useful when one of the parameters is extremely large and thus stored in a compact manner initially. It supports all the keyword arguments of the plot() and matplotlib.axes.Axes.set_xscale(). The additional parameters are basex, subsx and nonposx.

Syntax: Matplotlib.pyplot.semilogx(x, y, ) 

Parameters: Some important parameters are:

  • x: Values on X-axis.
  • y: Values on Y-axis.
  • color: (optional) Color of the line or the symbol.
  • linewidth: (optional) Width of the line.
  • label: (optional) Specifies the label of the graph
  • basex: (optional) The base of the x logarithm. The scalar should be larger than 1.
  • subsx: (optional) The location of the minor xticks; None defaults to autosubs, which depend on the number of decades in the plot.
  • nonposx: (optional) Non-positive values in x can be masked as invalid, or clipped to a very small positive number.
  • marker: (optional) Displays the points as the mentioned symbol.
  • markersize: (optional) Changes the size of all the markers.

Return: A log-scaled plot on the x-axis.

Example 1: simple plot.

Python3




#import required library
import matplotlib.pyplot as plt
 
# defining the values
# at X and Y axis
x = [1, 2, 3,
     4, 5, 6]
y = [100, 200, 300,
     400, 500, 600]
 
# plotting the given graph
plt.semilogx(x, y, marker = ".",
             markersize = 15,
             color = "green")
# plot with grid
plt.grid(True)
 
# show the plot
plt.show()


 
 

Output:

 

A simple plot

A simple plot

 

Example 2: Using negative and zero values in X and Y axis.

 

Since the X-axis is involved in the logarithmic function, it is clear that the negative or the positive values would either be clipped or masked, as specified by the nonposx parameter. By default, the negative or zero values are clipped.

 

Python3




# importing required libraries
import matplotlib.pyplot as plt
 
 
# defining the values
# at X and Y axis
x = [-1, -2, 0]
y = [5, -2, 0]
 
# plotting the given graph
plt.semilogx(x,y)
 
# show the plot
plt.show()


 
 

Output:

 

No value is plotted as all are negative x values

No value is plotted as all are negative x values 

 

Example 3: If symbols are used then the negative or zero values are simply removed and only the positive values are plotted.

 

Python3




#import required library
import matplotlib.pyplot as plt
 
# defining the values at X and Y axis
x = [-10, 30, 0, 20,
     -50, 25, 29, -3
     , 23, 25, 29, 31]
y = [-3, 30, -10, 0,
     -40, 3, 8, 0,
     -24, 40, 43, 25]
 
# plotting the graph
plt.semilogx(x,y,'g^', color = "red")
 
# plot with grid
plt.grid(True)
 
# set y axis label
plt.ylabel('---y---')
 
# set x axis label
plt.xlabel('---x---')
 
# show the plot
plt.show()


 
 

Output:

 

Only positive values are plotted

Only positive values are plotted

 

Example 4: If the lines are used, the values are clipped.

 

Python3




#import required library
import matplotlib.pyplot as plt
 
# defining the values
# at X and Y axis
x = [1, 2, -3,
     -4, 5, 6]
y = [100, 200, 300,
     400, 500, 600]
 
# plotting the graph
plt.semilogx(x, y, marker = ".",
             markersize = 15)
 
# plot with grid
plt.grid(True)
 
# show the plot
plt.show()


 
 

Output: 

 

The values corresponding to -3 and -4 are clipped

The values corresponding to -3 and -4 are clipped

 

Example 5: The following subplots will make the differences more clear.

 

Python3




#import required library
import matplotlib.pyplot as plt
 
# specifying the subplot
fig, axes = plt.subplots(nrows = 4,
                         ncols = 4,
                         figsize = (10,10))
 
# Or equivalently, 
# "plt.tight_layout()"
fig.tight_layout()
 
# subplot 1
plt.subplot(2, 2, 1)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
 
# plotting the given graph
plt.semilogx(x2, y2,
             color = "blue",
             linewidth = 4)
# set the title
plt.title("USING LINE")
 
# set y axis label
plt.ylabel('-----------y-----------')
 
# set x axis label
plt.xlabel('-----------x-----------')
 
# plot with grid
plt.grid(True)
 
 
# subplot 2
plt.subplot(2, 2, 2)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
 
# plotting the given graph
plt.semilogx(x2, y2,
             'g^',
             markersize = 20,
             color = "black")
# set the title
plt.title("USING SYMBOL")
 
# set y axis label
plt.ylabel('-----------y-----------')
 
# set x axis label
plt.xlabel('-----------x-----------')
 
# plot with grid
plt.grid(True)
 
# subplot 3
plt.subplot(2, 2, 3)
x2 = [0.1, 10, -30]
y2 = [40, -10 ,45]
 
# plotting the given graph
plt.semilogx(x2, y2,
             nonposx = "clip",
             color = "red",
             linewidth = 4)
# set the title
plt.title("CLIPPED")
 
# set y axis label
plt.ylabel('-----------y-----------')
 
# set x axis label
plt.xlabel('-----------x-----------')
 
# plot with grid
plt.grid(True)
 
# subplot 4
plt.subplot(2, 2, 4)
x2 = [0.1, 10, -30]
y2 = [40, -10, 45]
 
# plotting the given graph
plt.semilogx(x2, y2,
             nonposx = "mask",
             color = "green",
             linewidth = 4)
 
# set the title
plt.title("MASKED")
 
# set y axis label
plt.ylabel('-----------y-----------')
 
# set x axis label
plt.xlabel('-----------x-----------')
 
# plot with grid
plt.grid(True)
 
# show the plot
plt.show()


 
 

Output:

 

Differences between all the plot.

Differences between all the plot.

 

Example 6: Using nonposx parameter.

 

Masking removes the invalid values while clipping sets them to a very low possible value.

 

The difference between clipping and masking will be more clear in the following plot.

 

Python3




# import required library
import matplotlib.pyplot as plt
 
fig, axes = plt.subplots(nrows = 1,
                         ncols = 2,
                         figsize = (15,9))
# Or equivalently,  "plt.tight_layout()"
fig.tight_layout()
 
 
# subplot 1
x1 = [-1, 2, 0,
      -3, 5, 9,
      10, -3, -8,
      15, 12, 0.1,0.9]
 
y1 = [5, -2, 0,
      10, 20, 30,
      25, 28, 16,
      25, 28, 3, 5]
 
plt.subplot(1,2,1)
 
# plotting the graph
plt.semilogx(x1, y1,
             marker = ".",
             markersize = 20,
             nonposx = "clip",
             color = "green" )
 
# set the y-axis label
plt.ylabel('---y---')
 
# set the x-axis label
plt.xlabel('---x---')
 
# set the title
plt.title('CLIP')
 
# plot with grid
plt.grid(True)
 
 
# subplot 2
x2 = [-1, 2, 0,
      -3, 5, 9,
      10, -3, -8,
      15, 12, 0.1, 0.9]
 
y2 = [5, -2, 0,
      10, 20, 30,
      25, 28, 16,
      25, 28, 3, 5]
 
plt.subplot(1,2,2)
plt.semilogx(x2, y2,
             nonposx = "mask",
             color ="green",
             linewidth = 4,
             marker = ".",
             markersize = 20)
 
# set the title
plt.title('MASK')
 
# set the y-axis label
plt.ylabel('---y---')
 
# set the x-axis label
plt.xlabel('---x---')
 
# plot with grid
plt.grid(True)
 
# show the plot
plt.show()


 
 

Output:

 

Difference between mask and clip

Difference between mask and clip

 

Example 7: Changing the base.

 

The base can be set as per the convenience and it should be greater than 1 to satisfy the logarithmic properties.

 

Python3




# importing the required libraries
import numpy as np
import matplotlib.pyplot as plt
 
# function that will
# output the values
def function(t):
    return np.exp(-t)*np.sin(2*np.pi.t)/2 + np.tan(t)
 
# define the x-axis values
t1 = np.arange(-0.01, 1.0, 0.08)
t2 = np.arange(0.0, 5.0, 0.02)
 
 
# subplot 1
plt.figure(figsize = (10,10))
plt.subplot(211)
 
# plot the graph
plt.semilogx(t1, f(t1),
             'bo', t2, f(t2),
             'k', color = "blue",
             basex = 3)
# set the title
plt.title("BASE: 3")
 
# subplot 2
plt.subplot(212)
 
# plot the graph
plt.semilogx(t2, np.cos(2*np.pi*t2),
             'r--', color = "brown",
             linewidth = 2, basex = 4)
 
# set the title
plt.title("BASE: 4")
 
# show the plot
plt.show()


 
 

Output:

 

Changing the base

Changing the base

 

Example 8: Using subsx parameter.

 

Specifies the minor xticks on the X-axis. By default, it depends on the number of decades in the plot.

 

Python3




# import required library
import matplotlib.pyplot as plt
 
fig, axes = plt.subplots(nrows = 2,
                         ncols = 2,
                         figsize = (10,7))
 
# Or equivalently,  "plt.tight_layout()"
fig.tight_layout()
 
# subplot 1
plt.subplot(2, 2, 1)
x = [1, 11]
y = [4, 6]
 
# plot the graph
plt.semilogx(x, y, marker = ".",
             markersize = 20,
             color = "green")
 
# set the title
plt.title("Without subsx - line ")
 
# plot with grid
plt.grid(True)
 
 
# subplot 2
plt.subplot(2, 2, 2)
x = [1, 11]
y = [4, 6]
 
# plot the graph
plt.semilogx(x, y, subsx = [2, 3, 9, 10],
             marker = ".", markersize = 20,
             color = "green")
 
# set the title
plt.title("With subsx - line ")
plt.grid(True)
 
 
# subplot 3
plt.subplot(2, 2, 3)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', marker = ".",
             markersize = 20,
             color = "blue")
plt.title("Without subsx - symbol ")
plt.grid(True)
 
 
# subplot 4
plt.subplot(2, 2, 4)
x = [1, 11]
y = [4, 6]
plt.semilogx(x, y, 'g^', subsx=[2, 3, 9, 10],
             marker = ".", markersize = 20,
             color = "blue")
plt.title("With subsx - symbol ")
plt.grid(True)
 
plt.show()


 
 

Output:

 

SUBSX parameter

SUBSX parameter

 

Summary:

 

  • The X-axis is plotted in the logarithmic manner and base can be specified by defining the basex property. The base should be greater than 1
  • If lines are plotted then the negative or zero values are clipped by default.
  • The mask property removes the negative/zero values while clip property sets them to a very low positive value.
  • If the symbols are used then the negative/zero are masked by default.
  • semilogx follows all the arguments of plot() and matplotlib.axes.Axes.set_xscale().
  • subsx parameter defines the minor xticks.

 

RELATED ARTICLES

Most Popular

Recent Comments