Matplotlib is one of the most popular Python packages used for data visualization. It is a cross-platform library for making 2D plots from data in arrays.Pyplot is a collection of command style functions that make matplotlib work like MATLAB.
Note: For more information, refer to Python Matplotlib – An Overview
locator_params() is used for controlling the behaviors of tick locators. The attribute axis is for specifying on which axis is the function being applied.
# for Y axis matplotlib.pyplot.locator_params(axis='y', nbins=3) # for X axis matplotlib.pyplot.locator_params(axis='x', nbins=3) # for both, x-axis and y-axis: Default matplotlib.pyplot.locator_params(nbins=3)
Reducing the maximum number of ticks and use tight bounds:
plt.locator_params(tight=True, nbins=4)
Example 1:
# importing libraries import matplotlib.pyplot as plt # Y-axis Values y = [ - 1 , 4 , 9 , 16 , 25 ] # X-axis Values x = [ 1 , 2 , 3 , 4 , 5 ] plt.locator_params(axis = 'x' , nbins = 5 ) # adding grid to the plot axes = plt.axes() axes.grid() # defining the plot plt.plot(x, y, 'mx' , color = 'green' ) # range of y-axis in the plot plt.ylim(ymin = - 1.2 , ymax = 30 ) # Set the margins plt.margins( 0.2 ) # printing the plot plt.show() |
Output:
Example 2:
# importing libraries import matplotlib.pyplot as plt # defining the function def for_lines(xlab, ylab, plot_title, size_x, size_y, content = []): width = len (content[ 0 ][ 1 :]) s = [x for x in range ( 1 , width + 1 )] # specifying the size of figure plt.figure(figsize = (size_x, size_y)) for line in content: plt.plot(s, line[ 1 :], 'ro--' , color = 'green' , label = line[ 0 ]) # to add title to the plot plt.title(plot_title) # for adding labels to the plot plt.xlabel(xlab) plt.ylabel(ylab) t = len (s) plt.locator_params(nbins = t) for_lines( "x-axis" , "y-axis" , "GeeksForGeeks" , 7 , 7 , [[ 1 , 2 , 4 , 3 , 5 ]]) |
Output:
Example 3:
# importing libraries import matplotlib.pyplot as plt plt.locator_params(nbins = 10 ) # defining the plot plt.plot([ 1 , 2 , 3 , 5 , 7 ], [ 2 , 3 , 9 , 15 , 16 ], 'ro-' , color = 'red' ) # printing the plot plt.show() |
Output: