Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
matplotlib.pyplot.jet() Function:
The jet() function in pyplot module of matplotlib library is used to set the colormap to “jet”.
Syntax: matplotlib.pyplot.jet()
Parameters: This method does not accepts any parameter.
Returns: This method does not return any value.
Below examples illustrate the matplotlib.pyplot.jet() function in matplotlib.pyplot:
Example #1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np ang = 40 rad = 10 radm = 0.35 radii = np.linspace(radm, 0.95 , rad) angles = np.linspace( 0 , 4 * np.pi, ang) angles = np.repeat(angles[..., np.newaxis], rad, axis = 1 ) angles[:, 1 :: 2 ] + = np.pi / ang x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() z = (np.sin( 4 * radii) * np.cos( 4 * angles)).flatten() triang = tri.Triangulation(x, y) triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1 ), y[triang.triangles].mean(axis = 1 )) < radm) tpc = plt.tripcolor(triang, z, shading = 'flat' ) plt.colorbar(tpc) plt.jet() plt.title( 'matplotlib.pyplot.jet() function Example' , fontweight = "bold" ) plt.show() |
Output:
Example #2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import LogNorm dx, dy = 0.015 , 0.05 x = np.arange( - 3.0 , 3.0 , dx) y = np.arange( - 3.0 , 3.0 , dy) X, Y = np.meshgrid(x, y) extent = np. min (x), np. max (x), np. min (y), np. max (y) Z1 = np.add.outer( range ( 6 ), range ( 6 )) % 2 plt.imshow(Z1, cmap = "binary_r" , interpolation = 'nearest' , extent = extent, alpha = 1 ) def Lazyroar(x, y): return ( 1 - x / 2 + x * * 5 + y * * 6 ) * np.exp( - (x * * 2 + y * * 2 )) Z2 = Lazyroar(X, Y) plt.imshow(Z2, alpha = 0.7 , interpolation = 'bilinear' , extent = extent) plt.jet() plt.title( 'matplotlib.pyplot.jet() function Example' , fontweight = "bold" ) plt.show() |
Output: