Friday, December 27, 2024
Google search engine
HomeLanguagesMatplotlib.pyplot.gcf() in Python

Matplotlib.pyplot.gcf() in Python

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
 

matplotlib.pyplot.gcf()

matplotlib.pyplot.gcf() is primarily used to get the current figure. If no current figure is available then one is created with the help of the figure() function.
Syntax:
 

matplotlib.pyplot.gcf()

Example 1:

Python3




import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib.pyplot as plot
 
plot.plot([2, 3, 4])
 
# implementation of the
# matplotlib.pyplot.gcf()
# function
figure = plot.gcf().canvas
 
ag = figure.switch_backends(FigureCanvasAgg)
ag.draw()
A = np.asarray(ag.buffer_rgba())
 
# Pass off to PIL.
from PIL import Image
img = Image.fromarray(A)
 
# show image
img.show()


Output: 
 

matplotlib.pyplot.gcf()

Example 2: 
 

Python3




import matplotlib.pyplot as plt
from matplotlib.tri import Triangulation
from matplotlib.patches import Polygon
import numpy as np
 
# helper function to update
# the polygon
def polygon_updater(tr):
    if tr == -1:
        points = [0, 0, 0]
    else:
        points = tri.triangles[tr]
    x_axis = tri.x[points]
    y_axis = tri.y[points]
    polygon.set_xy(np.column_stack([x_axis, y_axis]))
 
# helper function to set the motion
# of polygon
def motion_handler(e):
    if e.inaxes is None:
        tr = -1
    else:
        tr = trifinder(e.xdata, e.ydata)
    polygon_updater(tr)
    e.canvas.draw()
 
 
# Making the  Triangulation.
all_angles = 16
all_radii = 5
minimum_radii = 0.25
radii = np.linspace(minimum_radii, 0.95, all_radii)
triangulation_angles = np.linspace(0, 2 * np.pi,
                                   all_angles,
                                   endpoint = False)
 
triangulation_angles = np.repeat(triangulation_angles[...,
                                                      np.newaxis],
                                 all_radii, axis = 1)
 
triangulation_angles[:, 1::2] += np.pi / all_angles
a = (radii * np.cos(triangulation_angles)).flatten()
b = (radii * np.sin(triangulation_angles)).flatten()
tri = Triangulation(a, b)
tri.set_mask(np.hypot(a[tri.triangles].mean(axis = 1),
                         b[tri.triangles].mean(axis = 1))
                < minimum_radii)
 
# Using TriFinder object from
# Triangulation
trifinder = tri.get_trifinder()
 
# Setting up the plot and the callbacks.
plt.subplot(111, aspect ='equal')
plt.triplot(tri, 'g-')
 
 # dummy data for (x-axis, y-axis)
polygon = Polygon([[0, 0], [0, 0]],
                  facecolor ='b')
polygon_updater(-1)
plt.gca().add_patch(polygon)
 
# implementation of the matplotlib.pyplot.gcf() function
plt.gcf().canvas.mpl_connect('motion_notification',
                             motion_handler)
plt.show()


Output: 
 

matplotlib.pyplot.gcf()

 

RELATED ARTICLES

Most Popular

Recent Comments