Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
matplotlib.pyplot.contour() Function
The contour() function in pyplot module of matplotlib library is used to plot contours.
Syntax: matplotlib.pyplot.contour(\*args, data=None, \*\*kwargs)
Parameters: This method accept the following parameters that are described below:
- X, Y: These parameter are the coordinates of the values in Z.
- Z : This parameter is the height values over which the contour is drawn.
- levels : This parameter is used to determine the numbers and positions of the contour lines / regions.
Returns: This returns the following:
- c :This returns the
QuadContourSet
.
Below examples illustrate the matplotlib.pyplot.contour() function in matplotlib.pyplot:
Example #1:
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib delta = 0.15 x = np.arange( 1.5 , 2.5 , delta) y = np.arange( 1.0 , 3.0 , delta) X, Y = np.meshgrid(x, y) Z = (np.exp(X - Y)) CS1 = plt.contour(X, Y, Z) fmt = {} strs = [ '1' , '2' , '3' , '4' , '5' , '6' , '7' ] for l, s in zip (CS1.levels, strs): fmt[l] = s plt.clabel(CS1, CS1.levels, inline = True , fmt = fmt, fontsize = 10 ) plt.title( 'matplotlib.pyplot.contour() Example' ) plt.show() |
Output:
Example #2:
# Implementation of matplotlib function import matplotlib import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt delta = 0.25 x = np.arange( - 3.0 , 5.0 , delta) y = np.arange( - 1.3 , 2.5 , delta) X, Y = np.meshgrid(x, y) Z = (np.exp( - X * * 2 - Y * * 2 ) - np.exp( - (X - 1 ) * * 2 - (Y - 1 ) * * 2 )) fig, ax = plt.subplots() im = ax.imshow(Z, interpolation = 'bilinear' , origin = 'lower' , cmap = "bone" , extent = ( - 3 , 3 , - 2 , 2 )) levels = np.arange( - 1.2 , 1.6 , 0.2 ) CS = ax.contour(Z, levels, origin = 'lower' , cmap = 'Greens' , linewidths = 2 , extent = ( - 3 , 3 , - 2 , 2 )) zc = CS.collections[ 6 ] plt.setp(zc, linewidth = 2 ) ax.clabel(CS, levels, inline = 1 , fmt = '% 1.1f' , fontsize = 14 ) plt.title( 'matplotlib.pyplot.contour() Example' ) plt.show() |
Output: