Friday, December 27, 2024
Google search engine
HomeLanguagesmatplotlib.patches.Rectangle in Python

matplotlib.patches.Rectangle in Python

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.

matplotlib.patches.Rectangle

The matplotlib.patches.Rectangle class is used to rectangle patch to a plot with lower left at xy = (x, y) with specified width, height and rotation angle.

Syntax: class matplotlib.patches.Rectangle(xy, width, height, angle=0.0, **kwargs)

Parameters:

  • xy: Lower left point to start the rectangle plotting
  • width : width of the rectangle
  • height: Height of the rectangle.
  • angle: Angle of rotation of the rectangle.

The below table has a list of valid kwargs;

PROPERTY DESCRIPTION
agg_filter a filter function that takes a (m, n, 3) float array and a dpi value that returns a (m, n, 3) array
alpha float or None
animated bool
antialiased or aa unknown
capstyle {‘butt’, ’round’, ‘projecting’}
clip_box Bbox
clip_on bool
clip_path [(Path, Transform)|Patch|None]
color color or sequence of rgba tuples
contains callable
edgecolor or ec or edgecolors color or None or ‘auto’
facecolor or fc or facecolors color or None
figure figure
fill bool
gid str
hatch {‘/’, ‘\’, ‘|’, ‘-‘, ‘+’, ‘x’, ‘o’, ‘O’, ‘.’, ‘*’}
in_layout bool
joinstyle {‘miter’, ’round’, ‘bevel’}
linestyle or ls {‘-‘, ‘–‘, ‘-.’, ‘:’, ”, (offset, on-off-seq), …}
linewidth or linewidths or lw float or None
path_effects AbstractPathEffect
picker None or bool or float or callable
path_effects AbstractPathEffect
picker float or callable[[Artist, Event], Tuple[bool, dict]]
rasterized bool or None
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform matplotlib.transforms.Transform
url str
visible bool
zorder float

Example 1:




import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
  
  
# The image
X = np.arange(16).reshape(4, 4)
  
# highlight some feature in the
# middle boxes.
fig = plt.figure()
  
ax = fig.add_subplot(111)
ax.imshow(X, cmap = plt.cm.gray,
          interpolation ='nearest')
ax.add_patch( Rectangle((0.5, 0.5),
                        2, 2,
                        fc ='none'
                        ec ='g',
                        lw = 10) )
  
plt.show()


Output:

Example 2:




import matplotlib
import matplotlib.pyplot as plt
  
  
fig = plt.figure()
ax = fig.add_subplot(111)
  
rect1 = matplotlib.patches.Rectangle((-200, -100),
                                     400, 200,
                                     color ='green')
  
rect2 = matplotlib.patches.Rectangle((0, 150),
                                     300, 20,
                                     color ='pink')
  
rect3 = matplotlib.patches.Rectangle((-300, -50),
                                     40, 200,
                                     color ='yellow')
  
ax.add_patch(rect1)
ax.add_patch(rect2)
ax.add_patch(rect3)
  
plt.xlim([-400, 400])
plt.ylim([-400, 400])
  
plt.show()


Output:

RELATED ARTICLES

Most Popular

Recent Comments