Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.patches.ConnectionPatch
The matplotlib.patches.ConnectionPatch a subclass of matplotlib.patches.FancyArrowPatch class and are used for making connecting lines between two points.
Syntax: class matplotlib.patches.ConnectionPatch(xyA, xyB, coordsA, coordsB=None, axesA=None, axesB=None, arrowstyle=’-‘, arrow_transmuter=None, connectionstyle=’arc3’, connector=None, patchA=None, patchB=None, shrinkA=0.0, shrinkB=0.0, mutation_scale=10.0, mutation_aspect=None, clip_on=False, dpi_cor=1.0, **kwargs)
Parameters:
- xyA: It is the start point of connecting line on x-y plot also called Point A.
- xyB: It is the start point of connecting line on x-y plot also called Point B.
- coordsA: Coordinate of point A.
- coordsB: Coordinate of point B.
- axesA: It is the start point of connecting axes on x-y plot.
- axesB: It is the end point of connecting axes on x-y plot.
- arrowstyle: It is used for styling the connection arrow. Its default type is ‘-‘.
- arrow_transmuter: It is used to ignore a connecting line.
- connectionstyle: It describes how posA and posB are connected. It can be an instance of the class ConnectionStyle or a string by the name of connectionstyle, it has optional comma-separated attributes.
- connector: It is generally ignored and decides which connector to ignore.
- patchA: Used to add patches at point A.
- patchB: Used to add patches at point B
- shrinkA: Used to shrink the connector at point A.
- shrinkB: Used to shrink the connector at point B.
- mutation_scale: Value with which attributes of arrowstyle (e.g., head_length) gets scaled.
- mutation_aspect: The height of the rectangle will be squeezed by this value before the mutation and the mutated box will be stretched by the inverse of it.
- clip_on: Set whether the artist uses clipping.
- dpi_cor: dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this.
The below are list of valid Kwargs key;
Key | Description |
---|---|
arrowstyle | the arrow style |
connectionstyle | the connection style |
relpos | default is (0.5, 0.5) |
patchA | default is bounding box of the text |
patchB | default is None |
shrinkA | default is 2 points |
shrinkB | default is 2 points |
mutation_scale | default is text size (in points) |
mutation_aspect | default is 1. |
? | any key for matplotlib.patches.PathPatch |
The coordinates of xyA and xyB are indicated by a string coordsA and coordsB.
Property | Description |
---|---|
‘figure points’ | points from the lower left corner of the figure |
‘figure pixels’ | pixels from the lower left corner of the figure |
‘figure fraction’ | 0, 0 is lower left of figure and 1, 1 is upper right |
‘axes points’ | points from lower left corner of axes |
‘axes pixels’ | pixels from lower left corner of axes |
‘axes fraction’ | 0, 0 is lower left of axes and 1, 1 is upper right |
‘data’ | use the coordinate system of the object being annotated (default) |
‘offset points’ | offset (in points) from the xy value |
‘polar’ | you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using a polar axes, you do not need to specify polar for the coordinate system since that is the native “data” coordinate system. |
Example 1:
Python3
from matplotlib.patches import ConnectionPatch import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots( 1 , 2 , figsize = ( 6 , 3 )) # Draw a simple arrow between # two points in axes coordinates # within a single axes. xyA = ( 0.2 , 0.2 ) xyB = ( 0.8 , 0.8 ) coordsA = "data" coordsB = "data" con = ConnectionPatch(xyA, xyB, coordsA, coordsB, arrowstyle = "-|>" , shrinkA = 5 , shrinkB = 5 , mutation_scale = 20 , fc = "w" ) ax1.plot([xyA[ 0 ], xyB[ 0 ]], [xyA[ 1 ], xyB[ 1 ]], "o" ) ax1.add_artist(con) # Draw an arrow between the # same point in data coordinates, # but in different axes. xy = ( 0.3 , 0.2 ) con = ConnectionPatch( xyA = xy, coordsA = ax2.transData, xyB = xy, coordsB = ax1.transData, arrowstyle = "->" , shrinkB = 5 ) ax2.add_artist(con) # Draw a line between the different # points, defined in different coordinate # systems. con = ConnectionPatch( # in axes coordinates xyA = ( 0.6 , 1.0 ), coordsA = ax2.transAxes, # x in axes coordinates, y in data coordinates xyB = ( 0.0 , 0.2 ), coordsB = ax2.get_yaxis_transform(), arrowstyle = "-" ) ax2.add_artist(con) ax1.set_xlim( 0 , 1 ) ax1.set_ylim( 0 , 1 ) ax2.set_xlim( 0 , . 5 ) ax2.set_ylim( 0 , . 5 ) plt.show() |
Output:
Example 2:
Python3
import matplotlib.pyplot as plt from matplotlib.patches import ConnectionPatch import numpy as np # make figure and assign axis # objects fig = plt.figure(figsize = ( 9 , 5 )) ax1 = fig.add_subplot( 121 ) ax2 = fig.add_subplot( 122 ) fig.subplots_adjust(wspace = 0 ) # pie chart parameters ratios = [. 27 , . 56 , . 17 ] explode = [ 0.1 , 0 , 0 ] # rotate so that first wedge is # split by the x-axis angle = - 180 * ratios[ 0 ] ax1.pie(ratios, autopct = '% 1.1f %%' , startangle = angle, explode = explode) # bar chart parameters xpos = 0 bottom = 0 ratios = [. 33 , . 54 , . 07 , . 06 ] width = . 2 colors = [[. 1 , . 3 , . 5 ], [. 1 , . 3 , . 3 ], [. 1 , . 3 , . 7 ], [. 1 , . 3 , . 9 ]] for j in range ( len (ratios)): height = ratios[j] ax2.bar(xpos, height, width, bottom = bottom, color = colors[j]) ypos = bottom + ax2.patches[j].get_height() / 2 bottom + = height ax2.text(xpos, ypos, "% d %%" % (ax2.patches[j].get_height() * 100 ), ha = 'center' ) ax2.set_title('') ax2.legend(( '50-65' , 'Over 65' , '35-49' , 'Under 35' )) ax2.axis( 'off' ) ax2.set_xlim( - 2.5 * width, 2.5 * width) # use ConnectionPatch to draw # lines between the two plots # get the wedge data theta1, theta2 = ax1.patches[ 0 ].theta1, ax1.patches[ 0 ].theta2 center, r = ax1.patches[ 0 ].center, ax1.patches[ 0 ].r bar_height = sum ([item.get_height() for item in ax2.patches]) # draw top connecting line x = r * np.cos(np.pi / 180 * theta2) + center[ 0 ] y = np.sin(np.pi / 180 * theta2) + center[ 1 ] con = ConnectionPatch(xyA = ( - width / 2 , bar_height), coordsA = ax2.transData, xyB = (x, y), coordsB = ax1.transData) con.set_color([ 0 , 0 , 0 ]) con.set_linewidth( 4 ) ax2.add_artist(con) # draw bottom connecting line x = r * np.cos(np.pi / 180 * theta1) + center[ 0 ] y = np.sin(np.pi / 180 * theta1) + center[ 1 ] con = ConnectionPatch(xyA = ( - width / 2 , 0 ), coordsA = ax2.transData, xyB = (x, y), coordsB = ax1.transData) con.set_color([ 0 , 0 , 0 ]) ax2.add_artist(con) con.set_linewidth( 4 ) plt.show() |
Output: