Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.patches.CirclePolygon
The matplotlib.patches.CirclePolygon
class is used for polygon-approximation of a circle patch. It is used to make a circle at xy = (x, y)
with a radius that has been provided. A regular polygon with resolution sides is approximated with this circle.
Syntax: class matplotlib.patches.CirclePolygon(xy, radius=5, resolution=20, **kwargs)
Parameters:
- xy: The origin coordinate of the circle to be drawn.
- radius: It’s an optional parameter that is used to set the radius of the circle.It defaults to 5 units.
- resolution: As the name suggest it is used to set the image resolution. It is optional and defaults to 20.
Below table provides with the optional valid kwargs ;
PROPERTY | DESCRIPTION |
---|---|
agg_filter | a filter function that takes a (m, n, 3) float array and a dpi value that returns a (m, n, 3) array |
alpha | float or None |
animated | bool |
antialiased or aa | unknown |
capstyle | {‘butt’, ’round’, ‘projecting’} |
clip_box | Bbox |
clip_on | bool |
clip_path | [(Path, Transform)|Patch|None] |
color | color or sequence of rgba tuples |
contains | callable |
edgecolor or ec or edgecolors | color or None or ‘auto’ |
facecolor or fc or facecolors | color or None |
figure | figure |
fill | bool |
gid | str |
hatch | {‘/’, ‘\’, ‘|’, ‘-‘, ‘+’, ‘x’, ‘o’, ‘O’, ‘.’, ‘*’} |
in_layout | bool |
joinstyle | {‘miter’, ’round’, ‘bevel’} |
linestyle or ls | {‘-‘, ‘–‘, ‘-.’, ‘:’, ”, (offset, on-off-seq), …} |
linewidth or linewidths or lw | float or None |
path_effects | AbstractPathEffect |
picker | None or bool or float or callable |
path_effects | AbstractPathEffect |
picker | float or callable[[Artist, Event], Tuple[bool, dict]] |
rasterized | bool or None |
sketch_params | (scale: float, length: float, randomness: float) |
snap | bool or None |
transform | matplotlib.transforms.Transform |
url | str |
visible | bool |
zorder | float |
Example 1:
import matplotlib.pyplot as plt from matplotlib.patches import CirclePolygon circle = CirclePolygon(( 0 , 0 ), radius = 0.75 , fc = 'y' ) plt.gca().add_patch(circle) verts = circle.get_path().vertices trans = circle.get_patch_transform() points = trans.transform(verts) plt.plot(points[:, 0 ], points[:, 1 ]) plt.axis( 'scaled' ) plt.show() |
Output:
Example 2:
import numpy as np import matplotlib from matplotlib.patches import Circle, Wedge, Polygon, Ellipse from matplotlib.collections import PatchCollection import matplotlib.pyplot as plt import matplotlib.patches as matpatches fig, ax = plt.subplots(figsize = ( 8 , 8 )) patches = [] circle = Circle(( 2 , 2 ), 2 ) patches.append(circle) polygon = matpatches.PathPatch(patches[ 0 ].get_path()) patches.append(polygon) colors = 2 * np.random.rand( len (patches)) p = PatchCollection(patches, cmap = matplotlib.cm.jet, alpha = 0.4 ) p.set_array(np.array(colors)) ax.add_collection(p) plt.axis([ - 10 , 10 , - 10 , 10 ]) plt.show() |
Output: