Matplotlib is a library in Python and it is a numerical – mathematical extension for NumPy library. The figure module provides the top-level Artist, the Figure, which contains all the plot elements. This module is used to control the default spacing of the subplots and top-level containers for all plot elements.
matplotlib.figure.Figure.add_axes() function
The add_axes() method figure module of matplotlib library is used to add an axes to the figure.
Syntax: add_axes(self, *args, **kwargs) Parameters: This accept the following parameters that are described below:
- rect : This parameter is the dimensions [left, bottom, width, height] of the new axes.
- projection : This parameter is the projection type of the Axes.
- sharex, sharey : These parameters share the x or y axis with sharex and/or sharey.
- label : This parameter is the label for the returned axes.
Returns: This method return the axes class depends on the projection used.
Note : To understand multiple axes( multiple rectangle insertion in generated figure) easily, Think of a rectangle which is 1 * 1 (with 0.1 as increment ).Within the rectangle we have arrange those axes with specifying ([a,b,c,d])
(a,b) is the point in southwest corner of the rectangle which we create. c represents width and d represents height of the respective rectangle.
Try this basic example on your own to understand their placement within a rectangle.
import matplotlib.pyplot as plt
import numpy as np
figu = plt.figure()
r = figu.patch
r.set_facecolor(‘lightslategray’)axes = figu.add_axes([0, 0.4, 0.1, 1])
axes = figu.add_axes([1, 1, 0.2, 0.3])
plt.show()
Below examples illustrate the matplotlib.figure.Figure.add_axes() function in matplotlib.figure: Example 1:
Python3
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt fig = plt.figure() fig.subplots_adjust(top = 0.8 ) ax1 = fig.add_subplot( 211 ) t = np.arange( 0.0 , 1.0 , 0.01 ) s = np.sin( 2 * np.pi * t) line, = ax1.plot(t, s, color = 'green' , lw = 2 ) np.random.seed( 19680801 ) ax2 = fig.add_axes([ 0.15 , 0.1 , 0.7 , 0.3 ]) n, bins, patches = ax2.hist(np.random.randn( 1000 ), 50 , facecolor = 'yellow' , edgecolor = 'yellow' ) fig.suptitle('matplotlib.figure.Figure.add_axes() \ function Example\n\n', fontweight = & quot bold & quot ) plt.show() |
Output: Example-2:
Python3
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt fig = plt.figure() rect = fig.patch rect.set_facecolor( 'lightslategray' ) ax1 = fig.add_axes([ 0.1 , 0.3 , 0.4 , 0.4 ]) rect = ax1.patch rect.set_facecolor( 'lightgoldenrodyellow' ) for label in ax1.xaxis.get_ticklabels(): label.set_color( 'green' ) label.set_rotation( 25 ) label.set_fontsize( 16 ) for line in ax1.yaxis.get_ticklines(): line.set_color( 'yellow' ) line.set_markersize( 5 ) line.set_markeredgewidth( 3 ) fig.suptitle('matplotlib.figure.Figure.add_axes() \ function Example\n\n', fontweight = "bold") plt.show() |
Output: