Monday, October 6, 2025
HomeLanguagesMatplotlib.axis.Tick.set_path_effects() function in Python

Matplotlib.axis.Tick.set_path_effects() function in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

matplotlib.axis.Tick.set_path_effects() Function

The Tick.set_path_effects() function in axis module of matplotlib library is used to set the path effects. 
 

Syntax: Tick.set_path_effects(self, path_effects) 
 

Parameters: This method accepts the following parameters. 
 

  • path_effects: This parameter is the AbstractPathEffect.

Return value: This method does not return any value. 

Below examples illustrate the matplotlib.axis.Tick.set_path_effects() function in matplotlib.axis:
Example 1:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt  
import numpy as np  
import matplotlib.patheffects as path_effects  
       
       
fig, ax = plt.subplots()  
t = ax.text(0.02, 0.5,  
            'GeeksForGeeks',  
            fontsize = 40,   
            weight = 1000,   
            va ='center')  
       
Tick.set_path_effects(t, [path_effects.PathPatchEffect(offset =(4, -4),  
                                                 hatch ='xxxx',  
                                                 facecolor ='lightgreen'),  
                    path_effects.PathPatchEffect(edgecolor ='white',   
                                                 linewidth = 1.1,  
                                                 facecolor ='yellow')])
  
fig.suptitle('matplotlib.axis.Tick.set_path_effects() \
function Example', fontweight ="bold")  
     
plt.show() 


Output: 
 

Example 2:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt  
import matplotlib.patheffects as PathEffects  
import numpy as np  
       
fig, ax1 = plt.subplots()  
ax1.imshow([[1, 2], [2, 3]])  
       
txt = ax1.annotate("Fourth Qaud",  
                   (1., 1.),  
                   (0., 0),  
                   arrowprops = dict(arrowstyle ="->",  
                                     connectionstyle ="angle3",  
                                     lw = 2),  
                   size = 20, ha ="center",  
                   path_effects =[PathEffects.withStroke(linewidth = 3,  
                                                         foreground ="r")])  
       
Tick.set_path_effects(txt.arrow_patch, [  
    PathEffects.Stroke(linewidth = 5,   
                       foreground ="r"),  
    PathEffects.Normal()])  
       
ax1.grid(True, linestyle ="-")  
       
pe = [PathEffects.withStroke(linewidth = 3,  
                             foreground ="r")]  
       
for l in ax1.get_xgridlines() + ax1.get_ygridlines():  
    Tick.set_path_effects(l, pe) 
  
fig.suptitle('matplotlib.axis.Tick.set_path_effects() \
function Example', fontweight ="bold")  
     
plt.show() 


Output: 
 

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32338 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6707 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11936 POSTS0 COMMENTS
Shaida Kate Naidoo
6825 POSTS0 COMMENTS
Ted Musemwa
7089 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6781 POSTS0 COMMENTS