Friday, November 21, 2025
HomeLanguagesMatplotlib.axis.Tick.set_path_effects() function in Python

Matplotlib.axis.Tick.set_path_effects() function in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

matplotlib.axis.Tick.set_path_effects() Function

The Tick.set_path_effects() function in axis module of matplotlib library is used to set the path effects. 
 

Syntax: Tick.set_path_effects(self, path_effects) 
 

Parameters: This method accepts the following parameters. 
 

  • path_effects: This parameter is the AbstractPathEffect.

Return value: This method does not return any value. 

Below examples illustrate the matplotlib.axis.Tick.set_path_effects() function in matplotlib.axis:
Example 1:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt  
import numpy as np  
import matplotlib.patheffects as path_effects  
       
       
fig, ax = plt.subplots()  
t = ax.text(0.02, 0.5,  
            'GeeksForGeeks',  
            fontsize = 40,   
            weight = 1000,   
            va ='center')  
       
Tick.set_path_effects(t, [path_effects.PathPatchEffect(offset =(4, -4),  
                                                 hatch ='xxxx',  
                                                 facecolor ='lightgreen'),  
                    path_effects.PathPatchEffect(edgecolor ='white',   
                                                 linewidth = 1.1,  
                                                 facecolor ='yellow')])
  
fig.suptitle('matplotlib.axis.Tick.set_path_effects() \
function Example', fontweight ="bold")  
     
plt.show() 


Output: 
 

Example 2:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt  
import matplotlib.patheffects as PathEffects  
import numpy as np  
       
fig, ax1 = plt.subplots()  
ax1.imshow([[1, 2], [2, 3]])  
       
txt = ax1.annotate("Fourth Qaud",  
                   (1., 1.),  
                   (0., 0),  
                   arrowprops = dict(arrowstyle ="->",  
                                     connectionstyle ="angle3",  
                                     lw = 2),  
                   size = 20, ha ="center",  
                   path_effects =[PathEffects.withStroke(linewidth = 3,  
                                                         foreground ="r")])  
       
Tick.set_path_effects(txt.arrow_patch, [  
    PathEffects.Stroke(linewidth = 5,   
                       foreground ="r"),  
    PathEffects.Normal()])  
       
ax1.grid(True, linestyle ="-")  
       
pe = [PathEffects.withStroke(linewidth = 3,  
                             foreground ="r")]  
       
for l in ax1.get_xgridlines() + ax1.get_ygridlines():  
    Tick.set_path_effects(l, pe) 
  
fig.suptitle('matplotlib.axis.Tick.set_path_effects() \
function Example', fontweight ="bold")  
     
plt.show() 


Output: 
 

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32405 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6781 POSTS0 COMMENTS
Nicole Veronica
11928 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11997 POSTS0 COMMENTS
Shaida Kate Naidoo
6907 POSTS0 COMMENTS
Ted Musemwa
7166 POSTS0 COMMENTS
Thapelo Manthata
6862 POSTS0 COMMENTS
Umr Jansen
6847 POSTS0 COMMENTS