Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
matplotlib.axis.Axis.update_from() Function
The Axis.update_from() function in axis module of matplotlib library is used to Copy properties from other to self.
Syntax: Axis.update_from(self, other)
Parameters: This method accepts the following parameters.
- other: This parameter is the property to be updated.
Return value: This method return dictionary of all the properties of the artist.
Below examples illustrate the matplotlib.axis.Axis.update_from() function in matplotlib.axis:
Example 1:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import numpy as np import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D x = np.linspace( 0 , 3 * np.pi) y1 = np.sin(x) y2 = np.cos(x) fig = plt.figure() ax = fig.add_subplot( 111 ) ax.plot(x, y1, c = 'b' , label = 'y1' , linewidth = 1.0 ) ax.plot(x, y2, c = 'g' , label = 'y2' ) linewidth = 7 def update(prop1, prop2): Axis.update_from(prop1, prop2) prop1.set_linewidth( 7 ) plt.legend(handler_map = {plt.Line2D : HandlerLine2D(update_func = update)}) ax.set_title('matplotlib.axis.Axis.update_from() \ function Example', fontweight = "bold" ) plt.show() |
Output:
Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import numpy as np import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms fig, ax = plt.subplots() l1, = ax.plot([ 0.1 , 0.5 , 0.9 ], [ 0.1 , 0.9 , 0.5 ], "bo-" ) l2, = ax.plot([ 0.1 , 0.5 , 0.9 ], [ 0.5 , 0.2 , 0.7 ], "ro-" ) for l in [l1, l2]: xx = l.get_xdata() yy = l.get_ydata() shadow, = ax.plot(xx, yy) Axis.update_from(shadow, l) ot = mtransforms.offset_copy(l.get_transform(), ax.figure, x = 4.0 , y = - 6.0 , units = 'points' ) shadow.set_transform(ot) plt.title('matplotlib.axis.Axis.update_from() \ function Example', fontweight = "bold" ) plt.show() |
Output: