Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
Matplotlib.axis.Axis.set_animated() Function
The Axis.set_animated() function in axis module of matplotlib library is used to set the artist’s animation state.
Syntax: Axis.set_animated(self, b)
Parameters: This method accepts the following parameters.
- b: This parameter is the boolean value.
Return value: This method does not return any value.
Below examples illustrate the matplotlib.axis.Axis.set_animated() function in matplotlib.axis:
Example 1:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation data = np.array([[ 1 , 2 , 3 , 4 , 5 ], [ 7 , 4 , 9 , 2 , 3 ]]) fig = plt.figure() ax = plt.axes(xlim = ( 0 , 20 ), ylim = ( 0 , 20 )) line, = ax.plot([], [], 'r-' ) annotation = ax.annotate('', xy = (data[ 0 ][ 0 ], data[ 1 ][ 0 ])) Axis.set_animated(annotation, True ) def init(): return line, annotation def update(num): newData = np.array([[ 1 + num, 2 + num / / 2 , 3 , 4 - num / / 4 , 5 + num], [ 7 , 4 , 9 + num / / 3 , 2 , 3 ]]) line.set_data(newData) return line, annotation anim = animation.FuncAnimation(fig, update, frames = 25 , init_func = init, interval = 60 , blit = True ) fig.suptitle('matplotlib.axis.Axis.set_animated() \ function Example\n', fontweight = "bold" ) plt.show() |
Output:
Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig, ax = plt.subplots() ax.set_xlim([ - 1 , 1 ]) ax.set_ylim([ - 1 , 1 ]) L = 50 theta = np.linspace( 0 , 2 * np.pi, L) r = np.ones_like(theta) x = r * np.cos(theta) y = r * np.sin(theta) line, = ax.plot( 1 , 0 , 'ro' ) annotation = ax.annotate( 'annotation' , xy = ( 1 , 0 ), xytext = ( - 1 , 0 ), arrowprops = { 'arrowstyle' : "->" } ) Axis.set_animated(annotation, False ) def update(i): new_x = x[i % L] new_y = y[i % L] line.set_data(new_x, new_y) annotation.set_position(( - new_x, - new_y)) annotation.xy = (new_x, new_y) return line, annotation ani = animation.FuncAnimation( fig, update, interval = 50 , blit = False ) fig.suptitle('matplotlib.axis.Axis.set_animated() \ function Example\n', fontweight = "bold" ) plt.show() |
Output: