Friday, September 5, 2025
HomeLanguagesMatplotlib.axes.Axes.xcorr() in Python

Matplotlib.axes.Axes.xcorr() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.xcorr() Function

The Axes.xcorr() function in axes module of matplotlib library is used to plot the cross correlation between x and y.

Syntax: Axes.xcorr(self, x, y, normed=True, detrend=, usevlines=True, maxlags=10, *, data=None, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • x, y : These parameter are the sequence of scalar.
  • detrend: This parameter is an optional parameter. Its default value is mlab.detrend_none
  • normed: This parameter is also an optional parameter and contains the bool value. Its default value is True
  • usevlines: This parameter is also an optional parameter and contains the bool value. Its default value is True
  • maxlags: This parameter is also an optional parameter and contains the integer value. Its default value is 10
  • linestyle: This parameter is also an optional parameter and used for plotting the data points, only when usevlines is False.
  • marker: This parameter is also an optional parameter and contains the string. Its default value is ‘o’

Returns: This method returns the following:

  • lags:This method returns the lag vector
  • c:This method returns the auto correlation vector.
  • line : Added LineCollection if usevlines is True, otherwise add Line2D.
  • b: This method returns the horizontal line at 0 if usevlines is True, otherwise None.

The resultant is (lags, c, line, b).

Below examples illustrate the matplotlib.axes.Axes.xcorr() function in matplotlib.axes:

Example 1:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
   
# Time series data
neveropenx = np.array([24.40, 110.25, 20.05,
                   22.00, 61.90, 7.80
                   15.00, 22.80, 34.90
                   57.30])
  
neveropeny = np.array([24.40, 110.25, 20.05
                   22.00, 61.90, 7.80
                   15.00, 22.80, 34.90
                   57.30])
   
# Plot autocorrelation
fig, ax = plt.subplots()
ax.xcorr(neveropenx, neveropeny, maxlags = 9,
         color ="green")
   
# Add labels to autocorrelation 
# plotax.xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set_xlabel('X-axis')
  
ax.set_title('matplotlib.axes.Axes.xcorr() Example')
  
plt.show()


Output:

Example 2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
   
  
# Fixing random state for
# reproducibility
np.random.seed(10**7)
neveropenx = np.random.randn(100)
neveropeny = np.random.randn(100)
  
fig, ax = plt.subplots()
ax.xcorr(neveropenx,neveropeny, usevlines = True,
         normed = True, maxlags = 80
         color ="green")
  
ax.grid(True)
  
ax.set_title('matplotlib.axes.Axes.xcorr() Example')
  
plt.show()


Output:

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32269 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6638 POSTS0 COMMENTS
Nicole Veronica
11802 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11866 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7027 POSTS0 COMMENTS
Thapelo Manthata
6704 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS