Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library.
The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
#Sample Code
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # make an agg figure fig, ax = plt.subplots() ax.plot([ 1 , 2 , 3 ]) ax.set_title( 'matplotlib.axes.Axes function' ) fig.canvas.draw() plt.show() |
Output:
matplotlib.axes.Axes.set_aspect() Function
The Axes.set_aspect() function in axes module of matplotlib library is used to set the aspect of the axis scaling, i.e. the ratio of y-unit to x-unit.
Syntax:
Axes.set_aspect(self, aspect, adjustable=None, anchor=None, share=False)
Parameters: This method accepts the following parameters.
- aspect : This parameter accepts the following value {‘auto’, ‘equal’} or num.
- adjustable : This defines which parameter will be adjusted to meet the required aspect.
- anchor : This parameter is used to define where the Axes will be drawn if there is extra space due to aspect constraints.
- share: This parameter is used to apply the settings to all shared Axes.
Return value: This method does not return any value.
Below examples illustrate the matplotlib.axes.Axes.set_aspect() function in matplotlib.axes:
Example-1:
# ImpleIn Reviewtation of matplotlib function import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots( 1 , 2 ) ax1.set_xscale( "log" ) ax1.set_yscale( "log" ) ax1.set_adjustable( "datalim" ) ax1.plot([ 1 , 3 , 34 , 4 , 46 , 3 , 7 , 45 , 10 ], [ 1 , 9 , 27 , 8 , 29 , 84 , 78 , 19 , 48 ], "o-" , color = "green" ) ax1.set_xlim( 1e - 1 , 1e2 ) ax1.set_ylim( 1 , 1e2 ) ax1.set_title( "No set_aspect" ) ax2.set_xscale( "log" ) ax2.set_yscale( "log" ) ax2.set_adjustable( "datalim" ) ax2.plot([ 1 , 3 , 34 , 4 , 46 , 3 , 7 , 45 , 10 ], [ 1 , 9 , 27 , 8 , 29 , 84 , 78 , 19 , 48 ], "o-" , color = "green" ) ax2.set_xlim( 1e - 1 , 1e2 ) ax2.set_ylim( 1 , 1e2 ) ax2.set_aspect( 2 ) ax2.set_title( "set_aspect value = 2" ) fig.suptitle('matplotlib.axes.Axes.set_aspect() \ function Example\n', fontweight = "bold" ) fig.canvas.draw() plt.show() |
Output:
Example-2:
# ImpleIn Reviewtation of matplotlib function import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np n_angles = 20 n_radii = 10 min_radius = 2 radii = np.linspace(min_radius, 0.95 , n_radii) angles = np.linspace( 0 , 4 * np.pi, n_angles, endpoint = False ) angles = np.repeat(angles[..., np.newaxis], n_radii, axis = 1 ) angles[:, 1 :: 2 ] + = np.pi / n_angles x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() triang = tri.Triangulation(x, y) triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1 ), y[triang.triangles].mean(axis = 1 )) < min_radius) fig, (ax, ax1) = plt.subplots( 1 , 2 ) ax.triplot(triang, 'bo-' , lw = 1 , color = "green" ) ax.set_title( "No set_aspect" ) ax1.set_aspect( 'equal' ) ax1.triplot(triang, 'bo-' , lw = 1 , color = "green" ) ax1.set_title( "set_aspect value ='equal'" ) fig.suptitle('matplotlib.axes.Axes.set_aspect() \ function Example\n', fontweight = "bold" ) fig.canvas.draw() plt.show() |
Output: