Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.minorticks_on() Function
The Axes.minorticks_on() function in axes module of matplotlib library is used to display minor ticks on the axes.
Syntax:
Axes.minorticks_on(self)
Below examples illustrate the matplotlib.axes.Axes.minorticks_on() function in matplotlib.axes:
Example 1:
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook import matplotlib.cm as cm from matplotlib.collections import LineCollection from matplotlib.ticker import MultipleLocator with cbook.get_sample_data( 's1045.ima.gz' ) as dfile: im = np.frombuffer(dfile.read(), np.uint16).reshape(( 256 , 256 )) fig, ax1 = plt.subplots() im = np.ravel(im) im = im[np.nonzero(im)] im = im / ( 2 * * 20 - 1 ) ax1.hist(im, bins = 40 , color = "green" ) ax1.set_yticks([]) ax1.set_xlabel( 'Intensity (a.u.)' ) ax1.set_ylabel( 'MRI density' ) ax1.minorticks_on() fig.suptitle('matplotlib.axes.Axes.minorticks_on() \ function Example\n\n', fontweight = "bold" ) plt.show() |
Output:
Example 2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np x = np.arange( 0.0 , 2 , 0.01 ) y1 = np.sin( 2 * np.pi * x) y2 = 1.2 * np.sin( 4 * np.pi * x) fig, (ax, ax1) = plt.subplots( 1 , 2 ) ax.fill_between(x, y1, y2, color = "green" , alpha = 0.6 ) ax.set_title( "Without minorticks_on()" ) ax1.fill_between(x, y1, y2, color = "green" , alpha = 0.6 ) ax1.minorticks_on() ax1.set_title( "With minorticks_on()" ) fig.suptitle('matplotlib.axes.Axes.minorticks_on()\ function Example\n\n', fontweight = "bold" ) plt.show() |
Output: