Saturday, November 15, 2025
HomeLanguagesMatplotlib.axes.Axes.bxp() in Python

Matplotlib.axes.Axes.bxp() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.bxp() Function

The Axes.bxp() function in axes module of matplotlib library is used to make a box and whisker plot for each column of x or each vector in sequence x.

Syntax: Axes.bxp(self, bxpstats, positions=None, widths=None, vert=True, patch_artist=False, shownotches=False, showmeans=False, showcaps=True, showbox=True, showfliers=True, boxprops=None, whiskerprops=None, flierprops=None, medianprops=None, capprops=None, meanprops=None, meanline=False, manage_ticks=True, zorder=None)

Parameters: This method accept the following parameters that are described below:

  • bxpstats : This parameter is alist of dictionaries containing stats for each boxplot.
  • positions : This parameter is used to sets the positions of the violins.
  • vert: This parameter is an optional parameter and contain boolean value. It makes the vertical violin plot if true.Otherwise horizontal.
  • widths: This parameter is used to sets the width of each violin either with a scalar or a sequence.
  • patch_artist : This parameter is used to produce boxes with the Line2D artist if it is false. Otherwise, boxes with Patch artists.
  • manage_ticks : This parameter is used to adjust the tick locations and labels.
  • zorder : This parameter is used to sets the zorder of the boxplot.
  • shownotches: This parameter contain boolean value. It is used to produce a notched and rectangular box plot.
  • showmeans : This parameter contain boolean value. It is used to toggle rendering of the means.
  • showcaps : This parameter contain boolean value. It is used to toggle rendering of the caps.
  • showfliers : This parameter contain boolean value. It is used to toggle rendering of the fliers.
  • boxprops : This parameter is used to set the plotting style of the boxes.
  • whiskerprops : This parameter is used to set the plotting style of the whiskers.
  • capprops : This parameter is used to set the plotting style of the caps.
  • flierprops : This parameter is used to set the plotting style of the fliers.
  • medianprops : This parameter is used to set the plotting style of the medians.
  • meanprops : This parameter is used to set the plotting style of the means.

Returns: This returns the following:

  • result :This returns the dictionary which maps each component of the violinplot to a list of the matplotlib.lines.Line2D instances.

Below examples illustrate the matplotlib.axes.Axes.bxp() function in matplotlib.axes:

Example-1:




import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
  
np.random.seed(10**7)
data = np.random.lognormal(size =(10, 4),
                           mean = 4.5
                           sigma = 4.75)
  
labels = ['G1', 'G2', 'G3', 'G4']
  
result = cbook.boxplot_stats(data,
                             labels = labels,
                             bootstrap = 1000)
  
for n in range(len(result)):
    result[n]['med'] = np.median(data)
    result[n]['mean'] *= 0.1
  
fig, axes1 = plt.subplots()
axes1.bxp(result)
  
axes1.set_title('matplotlib.axes.Axes.bxp() Example')
plt.show()


Output:

Example-2:




import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
  
np.random.seed(10**7)
data = np.random.lognormal(size =(37, 4),
                           mean = 4.5
                           sigma = 1.75)
labels = ['G1', 'G2', 'G3', 'G4']
  
stats = cbook.boxplot_stats(data, labels = labels, 
                            bootstrap = 100)
  
for n in range(len(stats)):
    stats[n]['med'] = np.median(data)
    stats[n]['mean'] *= 2
  
fig, [axes1, axes2, axes3] = plt.subplots(nrows = 1
                                          ncols = 3,
                                          sharey = True)
  
axes1.bxp(stats)
axes2.bxp(stats, showmeans = True)
axes3.bxp(stats, showmeans = True, meanline = True)
  
axes2.set_title('matplotlib.axes.Axes.bxp() Example')
plt.show()


Output:

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32399 POSTS0 COMMENTS
Milvus
95 POSTS0 COMMENTS
Nango Kala
6765 POSTS0 COMMENTS
Nicole Veronica
11917 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11984 POSTS0 COMMENTS
Shaida Kate Naidoo
6890 POSTS0 COMMENTS
Ted Musemwa
7143 POSTS0 COMMENTS
Thapelo Manthata
6838 POSTS0 COMMENTS
Umr Jansen
6840 POSTS0 COMMENTS