Friday, October 10, 2025
HomeLanguagesMatplotlib.axes.Axes.acorr() in Python

Matplotlib.axes.Axes.acorr() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.acorr() Function

The Axes.acorr() function in axes module of matplotlib library is used to plot the autocorrelation of x.

Syntax: Axes.acorr(self, x, *, data=None, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • x: This parameter is a sequence of scalar.
  • detrend: This parameter is an optional parameter. Its default value is mlab.detrend_none
  • normed: This parameter is also an optional parameter and contains the bool value. Its default value is True
  • usevlines: This parameter is also an optional parameter and contains the bool value. Its default value is True
  • maxlags: This parameter is also an optional parameter and contains the integer value. Its default value is 10
  • linestyle: This parameter is also an optional parameter and used for plotting the data points, only when usevlines is False.
  • marker: This parameter is also an optional parameter and contains the string. Its default value is ‘o’

Returns: This method returns the following:

  • lags:This method returns the lag vector
  • c:This method returns the auto correlation vector.
  • line : Added LineCollection if usevlines is True, otherwise add Line2D.
  • b: This method returns the horizontal line at 0 if usevlines is True, otherwise None.

The resultant is (lags, c, line, b).

Below examples illustrate the matplotlib.axes.Axes.acorr() function in matplotlib.axes:

Example 1:




# Implementation of matplotlib function
   
import matplotlib.pyplot as plt
import numpy as np
   
# Time series data
neveropen = np.array([24.40, 110.25, 20.05,
                  22.00, 61.90, 7.80
                  15.00, 22.80, 34.90
                  57.30])
   
# Plot autocorrelation
fig, ax = plt.subplots()
ax.acorr(neveropen, maxlags = 9)
   
# Add labels to autocorrelation
# plotax.xlabel('X-axis')
ax.set_ylabel('Y-axis')
  
ax.set_title('matplotlib.axes.Axes.acorr() Example')
  
plt.show()


Output:

Example 2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
   
   
# Fixing random state for reproducibility
np.random.seed(10**7)
neveropen = np.random.randn(100)
  
fig, ax = plt.subplots()
ax.acorr(neveropen, usevlines = True, normed = True,
         maxlags = 80, lw = 3)
ax.grid(True)
  
ax.set_title('matplotlib.axes.Axes.acorr() Example')
  
plt.show()


Output:

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32349 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6792 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS