Saturday, January 17, 2026
HomeLanguagesMatplotlib.artist.Artist.pickable() in Python

Matplotlib.artist.Artist.pickable() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Artist class contains Abstract base class for objects that render into a FigureCanvas. All visible elements in a figure are subclasses of Artist.

matplotlib.artist.Artist.pickable() method

The pickable() method in artist module of matplotlib library is used to return whether the artist is pickable or not.

Syntax: Artist.pickable(self)

Parameters: This method does not accept any parameters.

Returns: This method return whether the artist is pickable.

Below examples illustrate the matplotlib.artist.Artist.pickable() function in matplotlib:

Example 1:




# Implementation of matplotlib function
from matplotlib.artist import Artist
import numpy as np 
np.random.seed(19680801
import matplotlib.pyplot as plt 
     
  
volume = np.random.rayleigh(27, size = 40
amount = np.random.poisson(10, size = 40
ranking = np.random.normal(size = 40
price = np.random.uniform(1, 10, size = 40
     
fig, ax = plt.subplots() 
     
scatter = ax.scatter(volume * 2, amount * 3
                     c = ranking * 3,  
                     s = 0.3*(price * 3)**2
                     vmin = -4, vmax = 4,  
                     cmap = "Spectral"
    
legend1 = ax.legend(*scatter.legend_elements(num = 5), 
                    loc ="upper left"
                    title ="Ranking"
    
ax.add_artist(legend1) 
    
ax.text(60, 30, "Value return : "
        + str(Artist.pickable(ax)),  
        fontweight ="bold",  
        fontsize = 18
          
fig.suptitle('matplotlib.artist.Artist.pickable() function\
 Example', fontweight ="bold"
  
plt.show()


Output:

Example 2:




# Implementation of matplotlib function
from matplotlib.artist import Artist
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.cbook as cbook 
     
  
np.random.seed(10**7
data = np.random.lognormal(size =(10, 4), 
                           mean = 4.5
                           sigma = 4.75
    
labels = ['G1', 'G2', 'G3', 'G4'
     
result = cbook.boxplot_stats(data,  
                             labels = labels,  
                             bootstrap = 1000
     
for n in range(len(result)): 
    result[n]['med'] = np.median(data) 
    result[n]['mean'] *= 0.1
    
fig, axes1 = plt.subplots() 
axes1.bxp(result) 
    
axes1.text(2, 30000
           "Value return : " 
           + str(Artist.pickable(axes1)),  
           fontweight ="bold"
          
fig.suptitle('matplotlib.artist.Artist.pickable()\
 function Example', fontweight ="bold"
  
plt.show()


Output:

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32474 POSTS0 COMMENTS
Milvus
118 POSTS0 COMMENTS
Nango Kala
6846 POSTS0 COMMENTS
Nicole Veronica
11977 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12063 POSTS0 COMMENTS
Shaida Kate Naidoo
6985 POSTS0 COMMENTS
Ted Musemwa
7219 POSTS0 COMMENTS
Thapelo Manthata
6933 POSTS0 COMMENTS
Umr Jansen
6911 POSTS0 COMMENTS