Sunday, January 25, 2026
HomeLanguagesMathematical explanation for Linear Regression working

Mathematical explanation for Linear Regression working

Suppose we are given a dataset:

Given is a Work vs Experience dataset of a company and the task is to predict the salary of a employee based on his / her work experience. 
This article aims to explain how in reality Linear regression mathematically works when we use a pre-defined function to perform prediction task. 
Let us explore how the stuff works when Linear Regression algorithm gets trained. 

Iteration 1 – In the start, θ0 and θ1 values are randomly chosen. Let us suppose, θ0 = 0 and θ1 = 0. 

  • Predicted values after iteration 1 with Linear regression hypothesis. 

  • Cost Function – Error 

  • Gradient Descent – Updating θ0 value 
    Here, j = 0 

  • Gradient Descent – Updating θ1 value 
    Here, j = 1 

Iteration 2 – θ0 = 0.005 and θ1 = 0.02657

  • Predicted values after iteration 1 with Linear regression hypothesis. 

Now, similar to iteration no. 1 performed above we will again calculate Cost function and update θj values using Gradient Descent.
We will keep on iterating until Cost function doesn’t reduce further. At that point, model achieves best θ values. Using these θ values in the model hypothesis will give the best prediction results.
 

RELATED ARTICLES

Most Popular

Dominic
32475 POSTS0 COMMENTS
Milvus
122 POSTS0 COMMENTS
Nango Kala
6847 POSTS0 COMMENTS
Nicole Veronica
11977 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12065 POSTS0 COMMENTS
Shaida Kate Naidoo
6986 POSTS0 COMMENTS
Ted Musemwa
7221 POSTS0 COMMENTS
Thapelo Manthata
6934 POSTS0 COMMENTS
Umr Jansen
6912 POSTS0 COMMENTS