Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMake String Anti-Palindrome

Make String Anti-Palindrome

Given a string S of length N is said to be an Anti-palindrome string if, for each 0 ? i ? N-1, Si  != S(N – 1 ? i). The task is to print Anti-Palindrome String formed, If it is not possible to find print “-1”

Examples:

Input: S = “abdcccdb”
Output: “cbbaccdd”
Explanation: cbbaccdd is an Anti-palindrome string as for each 0 ? i ? N-1, Si != S(N-1?i).

Input: s = “xyz”
Output: -1

Approach: The problem can be solved based on the following idea:

If the length of the string S is odd, Then the answer is always “-1” as the condition fails on the middle element. Count the frequency of each character in the string S, if any character frequency is more than half the length of the string, then also the condition fails. Otherwise, print the string having characters continuously up to their respective frequencies.

Follow the below steps to implement the idea:

  • Check the length of the string, If it is odd print “-1“.
  • Else, count the frequency of each character using the map. 
  • If any character frequency is more than half of the string S length, print “-1”.
  • Else, print the string having characters continuously up to their respective frequencies.

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether the string
// can be palindrome or not
string checkPalindrome(string s)
{
 
    // Size of string
    int n = s.size();
 
    // If n is odd it is impossible to make
    if (n & 1) {
        return "-1";
    }
 
    // Declare a Map
    map<char, int> Mp;
 
    // Count the frequency of each element
    for (int i = 0; i < n; i++)
 
        Mp[s[i]]++;
 
    string r = "";
 
    // Traverse the Map
    for (auto i : Mp) {
 
        int p = i.second;
 
        // If max frequency of any character
        // is greater than n/2 then it is
        // impossible to make Anti-palindrome
        if (p > (n / 2)) {
            return "-1";
        }
 
        // Else make the non-palindrome string
        for (int j = 0; j < p; j++) {
 
            r += i.first;
        }
    }
 
    // reverse the string
    reverse(r.begin(), r.begin() + n / 2);
 
    // return the string
    return r;
}
 
// Driver Code
int main()
{
    string s = "abdcccdb";
 
    // Function call
    cout << checkPalindrome(s) << endl;
 
    return 0;
}


Java




// Java implementation for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to check whether the string
    // can be palindrome or not
    public static String checkPalindrome(String s)
    {
        // Size of string
        int n = s.length();
 
        // If n is odd it is impossible to make
        if (n % 2 == 1) {
            return "-1";
        }
 
        // Declare a Map
        Map<Character, Integer> Mp = new HashMap<>();
 
        // Count the frequency of each element
        for (int i = 0; i < n; i++) {
            Mp.put(s.charAt(i),
                   Mp.getOrDefault(s.charAt(i), 0) + 1);
        }
 
        String r = "";
 
        // Traverse the Map
        for (Map.Entry<Character, Integer> entry :
             Mp.entrySet()) {
            int p = entry.getValue();
 
            // If max frequency of any character
            // is greater than n/2 then it is
            // impossible to make Anti-palindrome
            if (p > (n / 2)) {
                return "-1";
            }
 
            // Else make the non-palindrome string
            for (int j = 0; j < p; j++) {
                r += entry.getKey();
            }
        }
 
        // reverse the string
        r = new StringBuilder(r.substring(0, n / 2))
                .reverse()
                .toString()
            + r.substring(n / 2);
 
        // return the string
        return r;
    }
 
    public static void main(String[] args)
    {
        String s = "abdcccdb";
 
        // Function call
        System.out.println(checkPalindrome(s));
    }
}
 
// This code is contributed by lokesh.


Python3




def reverse(s):
    str = ""
    for i in s:
        str = i + str
    return str
 
def checkPalindrome(s):
    # Size of string
    n = len(s)
 
    # If n is odd it is impossible to make
    if n & 1 != 0:
        return "-1"
 
    # Declare an object
    frequency = dict()
 
    # Count the frequency of each element
    for item in s:
        if (item in frequency):
            frequency[item] += 1
        else:
            frequency[item] = 1
 
 
    r = "";
 
    # Traverse the object
    for i in frequency:
        p = frequency[i]
 
    # If max frequency of any character
    # is greater than n/2 then it is
    # impossible to make Anti-palindrome
        if (p > (n // 2)):
            return "-1"
 
    # Else make the non-palindrome string
        for j in range(p):
            r += i
 
    # reverse the string
    print(reverse(r))
 
checkPalindrome("abdcccdb")
 
# The code is contributed by Gautam goel.


Javascript




function checkPalindrome(s) {
  // Size of string
  let n = s.length;
 
  // If n is odd it is impossible to make
  if (n & 1) {
    return "-1";
  }
 
  // Declare an object
  let frequency = {};
 
  // Count the frequency of each element
  for (let i = 0; i < n; i++) {
    if (frequency[s[i]]) {
      frequency[s[i]]++;
    } else {
      frequency[s[i]] = 1;
    }
  }
 
  let r = "";
 
  // Traverse the object
  for (let i in frequency) {
    let p = frequency[i];
 
    // If max frequency of any character
    // is greater than n/2 then it is
    // impossible to make Anti-palindrome
    if (p > (n / 2)) {
      return "-1";
    }
 
    // Else make the non-palindrome string
    for (let j = 0; j < p; j++) {
      r += i;
    }
  }
 
  // reverse the string
  r = r.split('').reverse().join('');
 
  // return the string
  return r;
}
 
console.log(checkPalindrome("abdcccdb"));


C#




using System;
using System.Collections.Generic;
 
class GFG {
    // Function to check whether the string
    // can be palindrome or not
    public static string CheckPalindrome(string s)
    {
        // Size of string
        int n = s.Length;
 
        // If n is odd it is impossible to make
        if (n % 2 == 1) {
            return "-1";
        }
 
        // Declare a dictionary
        Dictionary<char, int> Mp
            = new Dictionary<char, int>();
 
        // Count the frequency of each element
        for (int i = 0; i < n; i++) {
            if (!Mp.ContainsKey(s[i])) {
                Mp.Add(s[i], 1);
            }
            else {
                Mp[s[i]]++;
            }
        }
 
        string r = "";
 
        // Traverse the dictionary
        foreach(KeyValuePair<char, int> entry in Mp)
        {
            int p = entry.Value;
 
            // If max frequency of any character
            // is greater than n/2 then it is
            // impossible to make Anti-palindrome
            if (p > (n / 2)) {
                return "-1";
            }
 
            // Else make the non-palindrome string
            for (int j = 0; j < p; j++) {
                r += entry.Key;
            }
        }
 
        // reverse the string
        char[] charArray
            = r.Substring(0, n / 2).ToCharArray();
        Array.Reverse(charArray);
        r = new string(charArray) + r.Substring(n / 2);
 
        // return the string
        return r;
    }
 
    static void Main(string[] args)
    {
        string s = "abdcccdb";
 
        // Function call
        Console.WriteLine(CheckPalindrome(s));
    }
} // this code is contributed by writer


Output

cbbaccdd

Time Complexity: O(N * log N)
Auxiliary Space: O(N)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments