Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIMake a tree with n vertices , d diameter and at most...

Make a tree with n vertices , d diameter and at most vertex degree k

Given three integers N, D and K. The task is to check whether it is possible to make a tree with exactly N vertices, D diameter (the number of edges in the longest path between any two vertices), and degree of each vertex must be at most K. If it is possible then print all the possible edges otherwise print No.

Examples: 

Input: N = 6, D = 3, K = 4 
Output: 
1 2 
2 3 
3 4 
5 2 
6 2 
 

Input: N = 6, D = 2, K = 4 
Output: N0 
 

Approach: Let’s construct the tree with the following algorithm: If (d > n – 1), print “No” and terminate the program. Otherwise, let’s keep the array deg of the length n which will represent degrees of vertices.
The first step is to construct the diameter of the tree. Let the first (d + 1) vertices form it. 

Let’s add d edges to the answer and increase degrees of vertices corresponding to these edges, and if some vertex has degree greater than k, print “No” and terminate the program.

The second (and the last) step is to attach the remaining (n – d – 1) vertices to the tree. Let’s call the vertex free if its degree is less than k. Also, let’s keep all free vertices forming the diameter in some data structure which allows us to take the vertex with the minimum maximal distance to any other vertex and remove such vertices. It can be done by, for example, set of pairs (distv, v), where distv is the maximum distance from the vertex v to any other vertex. Now let’s add all the vertices starting from the vertex (d + 1) (0-indexed) to the vertex n?1, let the current vertex be u. One can get the vertex with the minimum maximal distance to any other vertex, let it be v. Now increase the degree of vertices u and v, add the edge between them, and if v still be free, return it to the data structure, otherwise remove it. The same with the vertex u (it is obvious that its maximal distance to any other vertex will be equal to (distv + 1).

If at any step our data structure will be empty or the minimum maximal distance will equal d, the answer is “No”. Otherwise, we can print the answer.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to Make a tree with n vertices, d as it's
// diameter and degree of each vertex is at most k
void Make_tree(int n, int d, int k)
{
    // If diameter > n - 1
    // impossible to build tree
    if (d > n - 1) {
        cout << "No";
        return;
    }
  
    // To store the degree of each vertex
    vector<int> deg(n);
  
    // To store the edge between vertices
    vector<pair<int, int> > ans;
  
    // To store maximum distance among
    // all the paths from a vertex
    set<pair<int, int> > q;
  
    // Make diameter of tree equals to d
    for (int i = 0; i < d; ++i) {
        ++deg[i];
        ++deg[i + 1];
        if (deg[i] > k || deg[i + 1] > k) {
            cout << "NO" << endl;
            return;
        }
  
        // Add an edge between them
        ans.push_back(make_pair(i, i + 1));
    }
  
    // Store maximum distance of each vertex
    // from other vertices
    for (int i = 1; i < d; ++i)
        q.insert(make_pair(max(i, d - i), i));
  
    // For next (n - d - 1) edges
    for (int i = d + 1; i < n; ++i) {
  
        // If the vertex already has the degree k
        while (!q.empty() && deg[q.begin()->second] == k)
            q.erase(q.begin());
  
        // If not possible
        if (q.empty() || q.begin()->first == d) {
            cout << "No";
            return;
        }
  
        // Increase the degree of vertices
        ++deg[i];
        ++deg[q.begin()->second];
  
        // Add an edge between them
        ans.push_back(make_pair(i, q.begin()->second));
  
        // Store the maximum distance of this vertex
        // from other vertices
        q.insert(make_pair(q.begin()->first + 1, i));
    }
  
    // Print all the edges of the built tree
    for (int i = 0; i < n - 1; ++i)
        cout << ans[i].first + 1 << " "
             << ans[i].second + 1 << endl;
}
  
// Driver code
int main()
{
    int n = 6, d = 3, k = 4;
    Make_tree(n, d, k);
  
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
  
class Main {
  
  // Function to Make a tree with n vertices, d as its diameter
  // and degree of each vertex is at most k
  static void Make_tree(int n, int d, int k) {
  
    // If diameter > n - 1
    // impossible to build tree
    if (d > n - 1) {
      System.out.println("No");
      return;
    }
  
    // To store the degree of each vertex
    int[] deg = new int[n];
  
    // To store the edge between vertices
    ArrayList<int[]> ans = new ArrayList<int[]>();
  
    // To store maximum distance among all the paths from a vertex
    HashMap<int[], Integer> q = new HashMap<int[], Integer>();
  
    // Make diameter of tree equals to d
    for (int i = 0; i < d; i++) {
      deg[i]++;
      deg[i + 1]++;
      if (deg[i] > k || deg[i + 1] > k) {
        System.out.println("No");
        return;
      }
  
      // Add an edge between them
      int[] edge = {i, i + 1};
      ans.add(edge);
    }
  
    // Store maximum distance of each vertex from other vertices
    for (int i = 1; i < d; i++) {
      int[] key = {Math.max(i, d - i), i};
      q.put(key, 1);
    }
  
    // For next (n - d - 1) edges
    for (int i = d + 1; i < n; i++) {
      ArrayList<int[]> arr = new ArrayList<int[]>(q.keySet());
  
      // If the vertex already has the degree k
      while (q.size() > 0 && deg[arr.get(0)[1]] == k) {
        q.remove(arr.get(0));
        arr.remove(0);
      }
  
      // If not possible
      if (q.size() == 0 || arr.get(0)[0] == d) {
        System.out.println("No");
        return;
      }
  
      // Increase the degree of vertices
      deg[i]++;
      deg[arr.get(0)[1]]++;
  
      // Add an edge between them
      int[] edge = {i, arr.get(0)[1]};
      ans.add(edge);
  
      // Store the maximum distance of this vertex from other vertices
      int[] key = {arr.get(0)[0] + 1, i};
      q.put(key, 1);
    }
  
    // Print all the edges of the built tree
    for (int i = 0; i < n - 1; i++) {
      System.out.println((ans.get(i)[0] + 1) + " " + (ans.get(i)[1] + 1));
    }
  }
  
  // Driver code
  public static void main(String[] args) {
    int n = 6, d = 3, k = 4;
    Make_tree(n, d, k);
  }
}


Python3




# Python3 implementation of the approach
  
# Function to Make a tree with n vertices, d as it's
# diameter and degree of each vertex is at most k
def Make_tree(n, d, k):
      
    # If diameter > n - 1
    # impossible to build tree
    if (d > n - 1):
        print("No")
        return
  
    # To store the degree of each vertex
    deg = [0]*(n)
  
    # To store the edge between vertices
    ans = []
  
    # To store maximum distance among
    #all the paths from a vertex
    q = {}
  
    # Make diameter of tree equals to d
    for i in range(d):
        deg[i] += 1
        deg[i + 1] += 1
        if (deg[i] > k or deg[i + 1] > k):
            print("NO")
            return
  
        # Add an edge between them
        ans.append((i, i + 1))
  
    # Store maximum distance of each vertex
    # from other vertices
    for i in range(1, d):
        q[(max(i, d - i), i)] = 1
  
    # For next (n - d - 1) edges
    for i in range(d + 1, n):
        arr = list(q.keys())
  
        # If the vertex already has the degree k
        while (len(q) > 0 and deg[arr[0][1]] == k):
            del q[arr[0]]
  
        # If not possible
        if (len(q) == 0 or arr[0][0] == d):
            print ("No")
            return
  
        # Increase the degree of vertices
        deg[i] += 1
        deg[arr[0][1]] += 1
  
        # Add an edge between them
        ans.append((i, arr[0][1]))
  
        # Store the maximum distance of this vertex
        # from other vertices
        q[(arr[0][0] + 1, i)] = 1
  
    # Print all the edges of the built tree
    for i in range(n - 1):
        print(ans[i][0] + 1, ans[i][1]+ 1)
  
# Driver code
if __name__ == '__main__':
    n, d, k = 6, 3, 4
    Make_tree(n, d, k)
  
    # This code is contributed by mohit kumar 29.


C#




//C# code for the above approach
using System;
using System.Collections.Generic;
  
class MainClass {
  public static void MakeTree(int n, int d, int k) {
    // If diameter > n - 1
    // impossible to build tree
    if (d > n - 1) {
        Console.WriteLine("No");
        return;
    }
  
    // To store the degree of each vertex
    List<int> deg = new List<int>(new int[n]);
  
    // To store the edge between vertices
    List<Tuple<int, int>> ans = new List<Tuple<int, int>>();
  
    // To store maximum distance among
    // all the paths from a vertex
    SortedSet<Tuple<int, int>> q = new SortedSet<Tuple<int, int>>();
  
    // Make diameter of tree equals to d
    for (int i = 0; i < d; ++i) {
        ++deg[i];
        ++deg[i + 1];
        if (deg[i] > k || deg[i + 1] > k) {
            Console.WriteLine("NO");
            return;
        }
  
        // Add an edge between them
        ans.Add(Tuple.Create(i, i + 1));
    }
  
    // Store maximum distance of each vertex
    // from other vertices
    for (int i = 1; i < d; ++i)
        q.Add(Tuple.Create(Math.Max(i, d - i), i));
  
    // For next (n - d - 1) edges
    for (int i = d + 1; i < n; ++i) {
  
        // If the vertex already has the degree k
        while (q.Count > 0 && deg[q.Min.Item2] == k)
            q.Remove(q.Min);
  
        // If not possible
        if (q.Count == 0 || q.Min.Item1 == d) {
            Console.WriteLine("No");
            return;
        }
  
        // Increase the degree of vertices
        ++deg[i];
        ++deg[q.Min.Item2];
  
        // Add an edge between them
        ans.Add(Tuple.Create(i, q.Min.Item2));
  
        // Store the maximum distance of this vertex
        // from other vertices
        q.Add(Tuple.Create(q.Min.Item1 + 1, i));
    }
  
    // Print all the edges of the built tree
    for (int i = 0; i < n - 1; ++i)
        Console.WriteLine(ans[i].Item1 + 1 + " " + (ans[i].Item2 + 1));
  }
  
  public static void Main(string[] args) {
    int n = 6, d = 3, k = 4;
    MakeTree(n, d, k);
  }
}
//This code is contributed by Potta Lokesh


Javascript




<script>
  
// Javascript implementation of the approach
  
// Function to Make a tree with n vertices,
// d as it's diameter and degree of each 
// vertex is at most k
function Make_tree(n, d, k)
{
      
    // If diameter > n - 1
    // impossible to build tree
    if (d > n - 1)
    {
        document.write("No");
        return;
    }
   
    // To store the degree of each vertex
    let deg = new Array(n);
    for(let i = 0; i < n; i++)
    {
        deg[i] = 0;
    }
   
    // To store the edge between vertices
    let ans = [];
   
    // To store maximum distance among
    // all the paths from a vertex
    let q = new Set();
   
    // Make diameter of tree equals to d
    for(let i = 0; i < d; ++i) 
    {
        ++deg[i];
        ++deg[i + 1];
          
        if (deg[i] > k || deg[i + 1] > k) 
        {
            document.write("NO<br>");
            return;
        }
   
        // Add an edge between them
        ans.push([i, i + 1]);
    }
   
    // Store maximum distance of each vertex
    // from other vertices
    for(let i = 1; i < d; ++i)
        q.add([(Math.max(i, d - i), i)]);
   
    // For next (n - d - 1) edges
    for(let i = d + 1; i < n; ++i) 
    {
         let arr = Array.from(q);
           
        // If the vertex already has the degree k
        while (q.size != 0 && deg[arr[0][1]] == k)
            q.delete(arr[0]);
   
        // If not possible
        if (q.size == 0 || arr[0][0] == d) 
        {
            document.write("No<br>")
            return;
        }
   
        // Increase the degree of vertices
        ++deg[i];
        ++deg[arr[0][1]];
   
        // Add an edge between them
        ans.push([i, arr[0][1]]);
   
        // Store the maximum distance of this
        // vertex from other vertices
        q.add([arr[0][0] + 1, i]);
    }
      
    // Print all the edges of the built tree
    for(let i = 0; i < n - 1; ++i)
        document.write((ans[i][0] + 1) + " "
                       (ans[i][1] + 1) + "<br>");
}
  
// Driver code
let n = 6, d = 3, k = 4;
Make_tree(n, d, k);
  
// This code is contributed by unknown2108
  
</script>


Output: 

1 2
2 3
3 4
5 2
6 2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments