Thursday, December 26, 2024
Google search engine
HomeData Modelling & AIMajority element in a circular array of 0’s and 1’s

Majority element in a circular array of 0’s and 1’s

Given a circular array containing only 0’s and 1’s, of size n where n = p*q (p and q are both odd integers). The task is to check if there is a way such that 1 will be in majority after applying the following operations:

  1. Divide circular array into p subarrays each of size q.
  2. In each subarray, the number which is in majority will get stored into array B.
  3. Now, 1 will said to be in majority if it is in majority into array B.

Note: A number is in majority in an array if it occurs more than half times of the size of an array.

Examples: 

Input: p = 3, q = 3, array[] = {0, 0, 1, 1, 0, 1, 1, 0, 0} 
Output: Yes 
Assume index of the array from 1 to N, Since the array is circular so index N and 1 will be adjacent. 
Divide this circular array into subarray in this way :- 
{2, 3, 4}, {5, 6, 7} and {8, 9, 1}. [These are the index of elements] 
In {2, 3, 4}, 1 is in majority, 
in {5, 6, 7}, again 1 is in majority and 
In {8, 9, 1}, 0 is in majority. 
Now insert 1, 1, 0 into array B so array B = {1, 1, 0} 
In array B, 1 is the majority element so print Yes.

Input: p = 3, q = 3, array[] = {1, 0, 0, 1, 1, 0, 1, 0, 0} 
Output: No 
No matter how you divide this circular subarray, 
1 will not be in majority. Hence, the answer is No. 

Approach:

  1. First of all, iterate over the circular array and count the total number of 1’s in each of p subarray(of size q).
  2. Store this number into another array (of size p).
  3. If in this case, 1 is in majority then, print yes.
  4. Else take another set by moving the previous set’s index 1 unit either increasing or decreasing it, and keep track of only those indices which are new in given set and update number of 1’s in the array.
  5. Repeat the 2nd and 3rd step.

We will repeat q times if there is no majority of 1 found until that, the answer would be NO, else ( like in the previous example case ) the answer would be 1. 
Since at the maximum, we can repeat this process q times and each time we are tracking only two elements in each of p subarray.

Explanation: 

In given example-1, we will divide circular subarray as [indices] => {1, 2, 3}, {4, 5, 6}, {7, 8, 9} and store number of 1’s in another array which are [1, 2, 1] in subarrays respectively.
Taking another set in example 1 by increasing 1 unit so set will be {2, 3, 4}, {5, 6, 7}, {8, 9, 1} now in set 1 only change is inclusion of element 4 and removal of element 1, we will only track these so updated number of 1’s will be 2, 2, 0.

Below is the implementation of above approach: 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if 1 is the majority
// element or not
void majority(bool a[], int p, int q, int size)
{
    // assuming starting and ending index of 1st subarray
    int start = 0, ends = q;
 
    // to store majority of p
    int arr[p];
 
    // subarrays each of size q ;
    int k = 0;
 
    // Loop to calculate total number
    // of 1's in subarray which will get
    // stored in array arr[]
    while (k < p) {
        int one = 0;
        for (int j = start; j < ends; j++) {
            if (a[j] == 1) {
                one++;
            }
        }
 
        // starting index of next subarray
        start = ends;
 
        // ending index of next subarray
        ends = ends + q;
 
        // storing 1's
        arr[k] = one;
        k++;
    }
 
    start = 0;
    ends = q;
 
    // variable to keep a check
    // if 1 is in majority or not
    bool found = 0;
 
    // In this case, we are repeating
    // the task of calculating
    // total number of 1's backward
    while (ends > 0) {
 
        // to store the total number of 1's
        int dist_one = 0;
 
        // Check if 1 is in majority in
        // this subarray
        for (int i = 0; i < p; i++)
            if (arr[i] > q / 2)
                dist_one++;
 
        // If 1 is in majority return
        if (dist_one > p / 2) {
            found = 1;
            cout << "Yes" << endl;
 
            return;
        }
 
        // shifting starting index of
        // subarray by 1 unit leftwards
        start--;
 
        // shifting ending index of
        // subarray by 1 unit leftwards
        ends--;
 
        // to ensure it is a valid index
        // ( array is circular) -1 index means
        // last index of a circular array
        if (start < 0)
            start = size + start;
 
        int st = start, en = ends, l = 0;
 
        // now to track changes occur
        // due to shifting of the subarray
        while (en < size) {
 
            if (a[st % size] != a[en % size]) {
 
                // st refers to starting index of
                // new subarray and en refers to
                // last element of same subarray
                // but in previous iteration
                if (a[st % size] == 1)
                    arr[l]++;
 
                else
                    arr[l]--;
            }
            l++;
 
            // now repeating the same
            // for other subarrays too
            st = (st + q);
            en = en + q;
        }
    }
 
    if (found == 0) {
        cout << "No" << endl;
    }
}
 
// Driver code
int main()
{
    int p = 3, q = 3;
    int n = p * q;
 
    bool a[] = { 0, 0, 1, 1, 0, 1, 1, 0, 0 };
 
    // circular array of given size
    majority(a, p, q, n);
 
    return 0;
}


Java




// Java implementation of above approach
 
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
// Function to check if 1 is the majority
// element or not
static void majority(int a[], int p, int q, int size)
{
    // assuming starting and ending index of 1st subarray
    int start = 0, ends = q;
  
    // to store majority of p
    int []arr = new int[p];
  
    // subarrays each of size q ;
    int k = 0;
  
    // Loop to calculate total number
    // of 1's in subarray which will get
    // stored in array arr[]
    while (k < p) {
        int one = 0;
        for (int j = start; j < ends; j++) {
            if (a[j] == 1) {
                one++;
            }
        }
  
        // starting index of next subarray
        start = ends;
  
        // ending index of next subarray
        ends = ends + q;
  
        // storing 1's
        arr[k] = one;
        k++;
    }
  
    start = 0;
    ends = q;
  
    // variable to keep a check
    // if 1 is in majority or not
    boolean  found = false;
  
    // In this case, we are repeating
    // the task of calculating
    // total number of 1's backward
    while (ends > 0) {
  
        // to store the total number of 1's
        int dist_one = 0;
  
        // Check if 1 is in majority in
        // this subarray
        for (int i = 0; i < p; i++)
            if (arr[i] > q / 2)
                dist_one++;
  
        // If 1 is in majority return
        if (dist_one > p / 2) {
            found = true;
            System.out.println( "Yes" );
  
            return;
        }
  
        // shifting starting index of
        // subarray by 1 unit leftwards
        start--;
  
        // shifting ending index of
        // subarray by 1 unit leftwards
        ends--;
  
        // to ensure it is a valid index
        // ( array is circular) -1 index means
        // last index of a circular array
        if (start < 0)
            start = size + start;
  
        int st = start, en = ends,l = 0;
  
        // now to track changes occur
        // due to shifting of the subarray
        while (en < size) {
  
            if (a[st % size] != a[en % size]) {
  
                // st refers to starting index of
                // new subarray and en refers to
                // last element of same subarray
                // but in previous iteration
                if (a[st % size] == 1)
                    arr[l]++;
  
                else
                    arr[l]--;
            }
            l++;
  
            // now repeating the same
            // for other subarrays too
            st = (st + q);
            en = en + q;
        }
    }
  
    if (found == false ) {
        System.out.println( "No" );
    }
}
  
// Driver code
public static void main(String args[])
{
    int p = 3, q = 3;
    int n = p * q;
  
    int a[] = { 0, 0, 1, 1, 0, 1, 1, 0, 0 };
  
    // circular array of given size
    majority(a, p, q, n);
  
     
}
}


Python3




# Python3 implementation of
# above approach
 
# Function to check if 1 is
# the majority element or not
def majority(a, p, q, size) :
 
    # assuming starting and
    # ending index of 1st subarray
    start = 0
    ends = q
 
    # to store arr = []
    arr = [None] * p
     
    # subarrays each of size q
    k = 0
     
    # Loop to calculate total number
    # of 1's in subarray which
    # will get stored in array arr
    while (k < p):
        one = 0
        for j in range(start, ends):
            if (a[j] == 1):
                one = one + 1
             
        # starting index of
        # next subarray
        start = ends
 
        # ending index of next
        # subarray
        ends = ends + q
 
        # storing 1's
        arr[k] = one
        k = k + 1
     
    start = 0
    ends = q
 
    # variable to keep a check
    # if 1 is in majority or not
    found = 0
 
    # In this case, we are
    # repeating the task of
    # calculating total number
    # of 1's backward
    while (ends > 0) :
 
        # to store the total
        # number of 1's
        dist_one = 0
  
        # Check if 1 is in majority
        # in this subarray
        for i in range(0, p):
            if (arr[i] > q / 2):
                dist_one = dist_one + 1
 
        # If 1 is in majority return
        if (dist_one > p / 2) :
            found = 1
            print("Yes")
            return
 
        # shifting starting index of
        # subarray by 1 unit leftwards
        start = start - 1
 
        # shifting ending index
        # of subarray by 1 unit
        # leftwards
        ends = ends - 1
 
        # to ensure it is a valid
        # index( array is circular) -1
        # index means last index of
        # a circular array
        if (start < 0):
            start = size + start
 
        st = start
        en = ends
        l = 0
 
        # now to track changes occur
        # due to shifting of the
        # subarray
        while (en < size) :
 
            if (a[st % size] != a[en % size]) :
 
                # st refers to starting index of
                # new subarray and en refers to
                # last element of same subarray
                # but in previous iteration
                if (a[st % size] == 1):
                    arr[l] = arr[l] + 1
 
                else:
                    arr[l] = arr[l] - 1
             
            l = l + 1
 
            # now repeating the same
            # for other subarrays too
            st = (st + q)
            en = en + q
         
    if (found == 0) :
        print("No")
     
# Driver code
p = 3
q = 3
n = p * q
 
a = [ 0, 0, 1, 1, 0, 1, 1, 0, 0 ]
 
# circular array of given size
majority(a, p, q, n)
 
# This code is contributed
# by Yatin Gupta


C#




// C# implementation of above approach
using System;
 
class GFG
{
// Function to check if 1 is the
// majority element or not
public static void majority(int[] a, int p,
                            int q, int size)
{
    // assuming starting and ending
    // index of 1st subarray
    int start = 0, ends = q;
 
    // to store majority of p
    int[] arr = new int[p];
 
    // subarrays each of size q ;
    int k = 0;
 
    // Loop to calculate total number
    // of 1's in subarray which will
    // get stored in array arr[]
    while (k < p)
    {
        int one = 0;
        for (int j = start; j < ends; j++)
        {
            if (a[j] == 1)
            {
                one++;
            }
        }
 
        // starting index of next subarray
        start = ends;
 
        // ending index of next subarray
        ends = ends + q;
 
        // storing 1's
        arr[k] = one;
        k++;
    }
 
    start = 0;
    ends = q;
 
    // variable to keep a check
    // if 1 is in majority or not
    bool found = false;
 
    // In this case, we are repeating
    // the task of calculating
    // total number of 1's backward
    while (ends > 0)
    {
 
        // to store the total number of 1's
        int dist_one = 0;
 
        // Check if 1 is in majority in
        // this subarray
        for (int i = 0; i < p; i++)
        {
            if (arr[i] > q / 2)
            {
                dist_one++;
            }
        }
 
        // If 1 is in majority return
        if (dist_one > p / 2)
        {
            found = true;
            Console.WriteLine("Yes");
 
            return;
        }
 
        // shifting starting index of
        // subarray by 1 unit leftwards
        start--;
 
        // shifting ending index of
        // subarray by 1 unit leftwards
        ends--;
 
        // to ensure it is a valid index
        // ( array is circular) -1 index means
        // last index of a circular array
        if (start < 0)
        {
            start = size + start;
        }
 
        int st = start, en = ends, l = 0;
 
        // now to track changes occur
        // due to shifting of the subarray
        while (en < size)
        {
 
            if (a[st % size] != a[en % size])
            {
 
                // st refers to starting index of
                // new subarray and en refers to
                // last element of same subarray
                // but in previous iteration
                if (a[st % size] == 1)
                {
                    arr[l]++;
                }
 
                else
                {
                    arr[l]--;
                }
            }
            l++;
 
            // now repeating the same
            // for other subarrays too
            st = (st + q);
            en = en + q;
        }
    }
 
    if (found == false)
    {
        Console.WriteLine("No");
    }
}
 
// Driver code
public static void Main(string[] args)
{
    int p = 3, q = 3;
    int n = p * q;
 
    int[] a = new int[] {0, 0, 1, 1,
                         0, 1, 1, 0, 0};
 
    // circular array of given size
    majority(a, p, q, n);
}
}
 
// This code is contributed by Shrikant13


PHP




<?php
//PHP  implementation of above approach
 
// Function to check if 1 is the majority
// element or not
 
function  majority($a, $p, $q, $size)
{
    // assuming starting and ending index of 1st subarray
     $start = 0; $ends = $q;
 
    // to store majority of p
    $arr=array(0);
 
    // subarrays each of size q ;
    $k = 0;
 
    // Loop to calculate total number
    // of 1's in subarray which will get
    // stored in array arr[]
    while ($k < $p) {
        $one = 0;
        for ($j = $start; $j < $ends; $j++) {
            if ($a[$j] == 1) {
                $one++;
            }
        }
 
        // starting index of next subarray
        $start = $ends;
 
        // ending index of next subarray
        $ends = $ends + $q;
 
        // storing 1's
        $arr[$k] = $one;
        $k++;
    }
 
    $start = 0;
    $ends = $q;
 
    // variable to keep a check
    // if 1 is in majority or not
     $found = 0;
 
    // In this case, we are repeating
    // the task of calculating
    // total number of 1's backward
    while ($ends > 0) {
 
        // to store the total number of 1's
        $dist_one = 0;
 
        // Check if 1 is in majority in
        // this subarray
        for ($i = 0; $i < $p; $i++)
            if ($arr[$i] > $q / 2)
                $dist_one++;
 
        // If 1 is in majority return
        if ($dist_one > $p / 2) {
            $found = 1;
            echo  "Yes" ,"\n";
 
            return;
        }
 
        // shifting starting index of
        // subarray by 1 unit leftwards
        $start--;
 
        // shifting ending index of
        // subarray by 1 unit leftwards
        $ends--;
 
        // to ensure it is a valid index
        // ( array is circular) -1 index means
        // last index of a circular array
        if ($start < 0)
            $start = $size + $start;
 
         $st = $start; $en = $ends; $l = 0;
 
        // now to track changes occur
        // due to shifting of the subarray
        while ($en < $size) {
 
            if ($a[$st % $size] != $a[$en % $size]) {
 
                // st refers to starting index of
                // new subarray and en refers to
                // last element of same subarray
                // but in previous iteration
                if ($a[$st % $size] == 1)
                    $arr[$l]++;
 
                else
                    $arr[$l]--;
            }
            $l++;
 
            // now repeating the same
            // for other subarrays too
            $st = ($st + $q);
            $en = $en + $q;
        }
    }
 
    if ($found == 0) {
        echo  "No" ,"\n";
    }
}
 
// Driver code
    $p = 3; $q = 3;
    $n = $p * $q;
 
     $a = array( 0, 0, 1, 1, 0, 1, 1, 0, 0 );
 
    // circular array of given size
    majority($a, $p, $q, $n);
 
 
 
#This Code is Contributed by ajit
?>


Javascript




<script>
 
    // Javascript implementation
    // of above approach
     
    // Function to check if 1 is the
    // majority element or not
    function majority(a, p, q, size)
    {
        // assuming starting and ending
        // index of 1st subarray
        let start = 0, ends = q;
 
        // to store majority of p
        let arr = new Array(p);
        arr.fill(0);
 
        // subarrays each of size q ;
        let k = 0;
 
        // Loop to calculate total number
        // of 1's in subarray which will
        // get stored in array arr[]
        while (k < p)
        {
            let one = 0;
            for (let j = start; j < ends; j++)
            {
                if (a[j] == 1)
                {
                    one++;
                }
            }
 
            // starting index of next subarray
            start = ends;
 
            // ending index of next subarray
            ends = ends + q;
 
            // storing 1's
            arr[k] = one;
            k++;
        }
 
        start = 0;
        ends = q;
 
        // variable to keep a check
        // if 1 is in majority or not
        let found = false;
 
        // In this case, we are repeating
        // the task of calculating
        // total number of 1's backward
        while (ends > 0)
        {
 
            // to store the total number of 1's
            let dist_one = 0;
 
            // Check if 1 is in majority in
            // this subarray
            for (let i = 0; i < p; i++)
            {
                if (arr[i] > parseInt(q / 2, 10))
                {
                    dist_one++;
                }
            }
 
            // If 1 is in majority return
            if (dist_one > parseInt(p / 2, 10))
            {
                found = true;
                document.write("Yes");
 
                return;
            }
 
            // shifting starting index of
            // subarray by 1 unit leftwards
            start--;
 
            // shifting ending index of
            // subarray by 1 unit leftwards
            ends--;
 
            // to ensure it is a valid index
            // ( array is circular) -1 index means
            // last index of a circular array
            if (start < 0)
            {
                start = size + start;
            }
 
            let st = start, en = ends, l = 0;
 
            // now to track changes occur
            // due to shifting of the subarray
            while (en < size)
            {
 
                if (a[st % size] != a[en % size])
                {
 
                    // st refers to starting index of
                    // new subarray and en refers to
                    // last element of same subarray
                    // but in previous iteration
                    if (a[st % size] == 1)
                    {
                        arr[l]++;
                    }
 
                    else
                    {
                        arr[l]--;
                    }
                }
                l++;
 
                // now repeating the same
                // for other subarrays too
                st = (st + q);
                en = en + q;
            }
        }
 
        if (found == false)
        {
            document.write("No");
        }
    }
     
    let p = 3, q = 3;
    let n = p * q;
   
    let a = [0, 0, 1, 1, 0, 1, 1, 0, 0];
   
    // circular array of given size
    majority(a, p, q, n);
     
</script>


Output

Yes

Complexity Analysis:

  • Time Complexity: O(p*q)
  • Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments