Saturday, February 7, 2026
HomeLanguagesMahotas – Parameter-Free Threshold Adjacency Statistics

Mahotas – Parameter-Free Threshold Adjacency Statistics

In this article we will see how we can get the image’s parameter-free threshold adjacency statistics in mahotas. TAS were presented by Hamilton et al. in “Fast automated cell phenotype image classification” 
For this tutorial we will use ‘lena’ image, below is the command to load the lena image 

mahotas.demos.load('lena')

Below is the lena image  

In order to do this we will use mahotas.features.pftas method
Syntax : mahotas.features.pftas(img)
Argument : It takes image object as argument
Return : It returns 1-D array 
 

Note : Input image should be filtered or should be loaded as grey

In order to filter the image we will take the image object which is numpy.ndarray and filter it with the help of indexing, below is the command to do this

image = image[:, :, 0]

Below is the implementation 

Python3




# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
import matplotlib.pyplot as plt
   
# loading image
img = mahotas.demos.load('lena')
   
# filtering image
img = img.max(2)
 
print("Image")
   
# showing image
imshow(img)
show()
 
# computing pftas
value = mahotas.features.pftas(img)
  
 
# printing value
print(value)


Output :

Image 

[8.40466496e-01 3.96107929e-02 3.32482230e-02 4.78710924e-02
 1.99986198e-02 9.29542475e-03 4.81678283e-03 3.41591333e-03
 1.27665448e-03 8.74954977e-01 3.30841335e-02 2.54587942e-02
 3.93565900e-02 1.67089809e-02 5.66629477e-03 2.56520631e-03
 1.63400128e-03 5.71021954e-04 8.94910256e-01 2.94171187e-02
 2.18929382e-02 3.09704979e-02 1.29246004e-02 5.15770440e-03
 2.69414206e-03 1.49270033e-03 5.40041990e-04 7.95067984e-01
 5.76368630e-02 4.24876742e-02 5.77221625e-02 2.45406623e-02
 1.12339424e-02 7.21633656e-03 3.25844038e-03 8.35934968e-04
 9.01310067e-01 2.80622737e-02 1.99915045e-02 3.05637402e-02
 1.27837749e-02 4.03875587e-03 1.90138423e-03 1.03160208e-03
 3.16897372e-04 8.28594029e-01 4.43179717e-02 3.44044708e-02
 5.11290091e-02 2.25801812e-02 1.03552423e-02 4.92079472e-03
 2.92782150e-03 7.70479341e-04]

Another example  

Python3




# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
  
# loading image
img = mahotas.imread('dog_image.png')
 
 
# filtering image
img = img[:, :, 0]
   
print("Image")
   
# showing image
imshow(img)
show()
 
# computing pftas
value = mahotas.features.pftas(img)
  
 
# printing value
print(value)


Output :
 

Image

 

[9.09810233e-01 2.60317846e-02 1.97574078e-02 2.77915537e-02
 1.31694722e-02 2.52446879e-03 6.36716463e-04 2.17571455e-04
 6.07920241e-05 9.15640448e-01 2.48822727e-02 1.86702013e-02
 2.63437145e-02 1.18992323e-02 2.02411568e-03 4.07844204e-04
 1.09513721e-04 2.26580113e-05 9.71165298e-01 9.19026798e-03
 6.63816594e-03 8.62583483e-03 3.68366898e-03 5.02318497e-04
 1.13426757e-04 5.40127416e-05 2.70063708e-05 8.33778879e-01
 4.29548185e-02 3.26013800e-02 5.29056931e-02 2.73491801e-02
 7.36566005e-03 1.98765890e-03 8.80608375e-04 1.76121675e-04
 9.00955422e-01 2.52231333e-02 1.89294439e-02 3.21553830e-02
 1.65154923e-02 4.43605931e-03 1.16101879e-03 5.12783301e-04
 1.11264301e-04 9.08750580e-01 2.31333775e-02 1.64857417e-02
 2.92278667e-02 1.50633649e-02 4.92893055e-03 1.33347821e-03
 7.40821225e-04 3.35838955e-04]

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32491 POSTS0 COMMENTS
Milvus
126 POSTS0 COMMENTS
Nango Kala
6863 POSTS0 COMMENTS
Nicole Veronica
11987 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12076 POSTS0 COMMENTS
Shaida Kate Naidoo
6996 POSTS0 COMMENTS
Ted Musemwa
7238 POSTS0 COMMENTS
Thapelo Manthata
6947 POSTS0 COMMENTS
Umr Jansen
6933 POSTS0 COMMENTS