Thursday, December 26, 2024
Google search engine

Lucas Numbers

Lucas numbers are similar to Fibonacci numbers. Lucas numbers are also defined as the sum of its two immediately previous terms. But here the first two terms are 2 and 1 whereas in Fibonacci numbers the first two terms are 0 and 1 respectively. 
Mathematically, Lucas Numbers may be defined as:
{\displaystyle L_{n}:={\begin{cases}2&{\text{if }}n=0;\\1&{\text{if }}n=1;\\L_{n-1}+L_{n-2}&{\text{if }}n>1.\\\end{cases}}}
The Lucas numbers are in the following integer sequence:
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123 …………..
Write a function int lucas(int n) n as an argument and returns the nth Lucas number.
Examples : 
 

Input : 3
Output : 4

Input : 7
Output : 29

 

Recommended Practice

Method 1 (Recursive Solution) 
Below is a recursive implementation based on a simple recursive formula. 
 

C++




// Recursive C/C++ program 
// to find n'th Lucas number 
#include <stdio.h> 
  
// recursive function 
int lucas(int n) 
    // Base cases 
    if (n == 0) 
        return 2; 
    if (n == 1) 
        return 1; 
  
    // recurrence relation 
    return lucas(n - 1) + 
        lucas(n - 2); 
  
// Driver Code 
int main() 
    int n = 9; 
    printf("%d", lucas(n)); 
    return 0; 


Java




// Recursive Java program to
// find n'th Lucas number
  
class GFG 
{
  
    // recursive function
    public static int lucas(int n)
    {
  
        // Base cases
        if (n == 0)
            return 2;
        if (n == 1)
            return 1;
  
        // recurrence relation
        return lucas(n - 1) + 
               lucas(n - 2);
    }
  
    // Driver Code
    public static void main(String args[])
    {
        int n = 9;
        System.out.println(lucas(n));
    }
}
// This code is contributed 
// by Nikita Tiwari.


Python3




# Python3 program to
# find n'th Lucas number
  
# recursive function
def lucas(n):
    
    # Base cases
    if n == 0:
        return 2;
    if n == 1:
        return 1;
    
    # recurrence relation
    return lucas(n - 1) + lucas(n - 2);
      
# Driver code to test above methods
n = 9;
print(lucas(n));
  
# This code is contributed by phasing17


C#




// Recursive C# program to
// find n'th Lucas number
using System;
  
class GFG {
  
    // recursive function
    public static int lucas(int n)
    {
  
        // Base cases
        if (n == 0)
            return 2;
        if (n == 1)
            return 1;
  
        // recurrence relation
        return lucas(n - 1) + lucas(n - 2);
    }
  
    // Driver program
    public static void Main()
    {
  
        int n = 9;
  
        Console.WriteLine(lucas(n));
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// Recursive php program to
// find n'th Lucas number
  
// recursive function
function lucas($n)
{
      
// Base cases 
if ($n == 0) 
    return 2;
if ($n == 1) 
    return 1;
  
// recurrence relation 
return lucas($n - 1) + 
       lucas($n - 2); 
}
  
// Driver Code
$n = 9;
echo lucas($n);
  
// This code is contributed by ajit.
?>


Javascript




<script>
  
// Javascript program to
// find n'th Lucas number
  
    // recursive function
    function lucas(n)
    {
    
        // Base cases
        if (n == 0)
            return 2;
        if (n == 1)
            return 1;
    
        // recurrence relation
        return lucas(n - 1) + 
               lucas(n - 2);
    }
  
// Driver code to test above methods
  
        let n = 9;
        document.write(lucas(n));
   
 // This code is contributed by avijitmondal1998.
</script>


Output : 
 

76

Method 2 (Iterative Solution) 
The time complexity of the above implementation is exponential. We can optimize it to work in O(n) time using iteration. 
 

C++




// Iterative C/C++ program 
// to find n'th Lucas Number 
#include <stdio.h> 
  
// Iterative function 
int lucas(int n) 
    // declaring base values 
    // for positions 0 and 1 
    int a = 2, b = 1, c, i; 
  
    if (n == 0) 
        return a; 
  
    // generating number 
    for (i = 2; i <= n; i++) 
    
        c = a + b; 
        a = b; 
        b = c; 
    
    return b; 
  
// Driver Code 
int main() 
    int n = 9; 
    printf("%d", lucas(n)); 
    return 0; 


Java




// Iterative Java program to
// find n'th Lucas Number
class GFG 
{
    // Iterative function
    static int lucas(int n)
    {
        // declaring base values
        // for positions 0 and 1
        int a = 2, b = 1, c, i;
  
        if (n == 0)
            return a;
  
        // generating number
        for (i = 2; i <= n; i++) 
        {
            c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
  
    // Driver Code
    public static void main(String args[])
    {
        int n = 9;
        System.out.println(lucas(n));
    }
}
  
// This code is contributed 
// by Nikita tiwari.


Python3




# Iterative Python 3 program 
# to find n'th Lucas Number
  
# Iterative function
def lucas(n) :
  
    # declaring base values
    # for positions 0 and 1
    a = 2
    b = 1
      
    if (n == 0) :
        return a
   
    # generating number
    for i in range(2, n + 1) :
        c = a + b
        a = b
        b = c
      
    return b
      
   
# Driver Code
n = 9
print(lucas(n))
  
# This code is contributed
# by Nikita tiwari.


C#




// Iterative C# program to
// find n'th Lucas Number
using System;
  
class GFG {
  
    // Iterative function
    static int lucas(int n)
    {
  
        // declaring base values
        // for positions 0 and 1
        int a = 2, b = 1, c, i;
  
        if (n == 0)
            return a;
  
        // generating number
        for (i = 2; i <= n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
  
        return b;
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 9;
  
        Console.WriteLine(lucas(n));
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// Iterative php program 
// to find n'th Lucas Number
  
function lucas($n)
{
    // declaring base values
    // for positions 0 and 1
    $a = 2; $b = 1; $c; $i;
  
    if ($n == 0)
        return $a;
  
    // generating number
    for ($i = 2; $i <= $n; $i++) 
    {
        $c = $a + $b;
        $a = $b;
        $b = $c;
    }
    return $b;
}
  
// Driver Code
$n = 9;
echo lucas($n);
  
// This code is contributed by ajit
?>


Javascript




<script>
    // Iterative Javascript program to find n'th Lucas Number
      
    // Iterative function
    function lucas(n)
    {
   
        // declaring base values
        // for positions 0 and 1
        let a = 2, b = 1, c, i;
   
        if (n == 0)
            return a;
   
        // generating number
        for (i = 2; i <= n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
   
        return b;
    }
      
    let n = 9;
   
      document.write(lucas(n));
          
</script>


Output : 
 

76

Time complexity: O(n) since using a for loop

Space complexity: O(1) since using constant variables, since no extra space has been taken.

References: 
https://en.wikipedia.org/wiki/Lucas_number
This article is contributed by Harsh Agarwal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments