Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AILowest Common Ancestor of the deepest leaves of a Binary Tree

Lowest Common Ancestor of the deepest leaves of a Binary Tree

Given a Binary Tree consisting of N nodes having distinct values from the range [1, N], the task is to find the lowest common ancestor of the deepest leaves of the binary tree.

Examples:

Input:

Output: 1
Explanation: The deepest leaf nodes of the tree are {8, 9, 10}. Lowest common ancestor of these nodes is 1.

Input:

Output: 6

Approach: The given problem can be solved by finding the maximum depth of the tree and then perform the DFS Traversal to find the lowest common ancestor. Follow the steps below to solve the problem:

  • Find the maximum depth of a binary tree and store it in a variable, say depth.
  • Declare a function say DFS(root, curr) to find the LCS of nodes at the level depth:
    • If the root is NULL, then return NULL.
    • If the value of curr is equal to depth, then return the current node.
    • Recursively call to the left subtree as DFS(root?left, curr + 1) and store the returned value in a variable say left.
    • Recursively call to the right subtree as DFS(root?right, curr + 1) and store the returned value in a variable say right.
    • If the value of the left and the right both are NOT NULL, then return the current node as the current node is the lowest common ancestor. 
    • If the left is NOT NULL, then return left. Otherwise, return right.
  • After completing the above steps, print the value returned by the function call DFS(root, 0).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Node of a Binary Tree
struct Node {
    struct Node* left;
    struct Node* right;
    int data;
};
 
// Function to create
// a new tree Node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->data = key;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Function to find the depth
// of the Binary Tree
int finddepth(Node* root)
{
    // If root is not null
    if (!root)
        return 0;
 
    // Left recursive subtree
    int left = finddepth(root->left);
 
    // Right recursive subtree
    int right = finddepth(root->right);
 
    // Returns the maximum depth
    return 1 + max(left, right);
}
 
// Function to perform the depth
// first search on the binary tree
Node* dfs(Node* root, int curr,
          int depth)
{
    // If root is null
    if (!root)
        return NULL;
 
    // If curr is equal to depth
    if (curr == depth)
        return root;
 
    // Left recursive subtree
    Node* left = dfs(root->left,
                     curr + 1, depth);
 
    // Right recursive subtree
    Node* right = dfs(root->right,
                      curr + 1, depth);
 
    // If left and right are not null
    if (left != NULL && right != NULL)
        return root;
 
    // Return left, if left is not null
    // Otherwise return right
    return left ? left : right;
}
 
// Function to find the LCA of the
// deepest nodes of the binary tree
Node* lcaOfDeepestLeaves(Node* root)
{
    // If root is null
    if (!root)
        return NULL;
 
    // Stores the deepest depth
    // of the binary tree
    int depth = finddepth(root) - 1;
 
    // Return the LCA of the
    // nodes at level depth
    return dfs(root, 0, depth);
}
 
// Driver Code
int main()
{
    // Given Binary Tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->right->left->left = newNode(8);
    root->right->left->right = newNode(9);
 
    cout << lcaOfDeepestLeaves(root)->data;
 
    return 0;
}


Java




// Java program for the above approach
 
// Node of a Binary Tree
class Node
{
    Node left = null;
    Node right = null;
    int data;
     
    Node(int data)
    {
        this.data = data;
    }
}
 
class GFG{
 
// Function to find the depth
// of the Binary Tree
public static int findDepth(Node root)
{
     
    // If root is not null
    if (root == null)
        return 0;
 
    // Left recursive subtree
    int left = findDepth(root.left);
 
    // Right recursive subtree
    int right = findDepth(root.right);
 
    // Returns the maximum depth
    return 1 + Math.max(left, right);
}
 
// Function to perform the depth
// first search on the binary tree
public static Node DFS(Node root, int curr,
                                  int depth)
{
     
    // If root is null
    if (root == null)
        return null;
 
    // If curr is equal to depth
    if (curr == depth)
        return root;
 
    // Left recursive subtree
    Node left = DFS(root.left, curr + 1, depth);
 
    // Right recursive subtree
    Node right = DFS(root.right, curr + 1, depth);
 
    // If left and right are not null
    if (left != null && right != null)
        return root;
 
    // Return left, if left is not null
    // Otherwise return right
    return (left != null) ? left : right;
}
 
// Function to find the LCA of the
// deepest nodes of the binary tree
public static Node lcaOfDeepestLeaves(Node root)
{
     
    // If root is null
    if (root == null)
        return null;
 
    // Stores the deepest depth
    // of the binary tree
    int depth = findDepth(root) - 1;
 
    // Return the LCA of the
    // nodes at level depth
    return DFS(root, 0, depth);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Binary Tree
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
    root.right.left = new Node(6);
    root.right.right = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
 
    System.out.println(lcaOfDeepestLeaves(root).data);
}
}
 
// This code is contributed by girishthatte


Python3




# Python3 program for the above approach
 
# Node of a Binary Tree
class Node:
    def __init__(self, d):
        self.data = d
        self.left = None
        self.right = None
 
# Function to find the depth
# of the Binary Tree
def finddepth(root):
    # If root is not null
    if (not root):
        return 0
 
    # Left recursive subtree
    left = finddepth(root.left)
 
    # Right recursive subtree
    right = finddepth(root.right)
 
    # Returns the maximum depth
    return 1 + max(left, right)
 
# Function to perform the depth
# first search on the binary tree
def dfs(root, curr, depth):
    # If root is null
    if (not root):
        return None
 
    # If curr is equal to depth
    if (curr == depth):
        return root
 
    # Left recursive subtree
    left = dfs(root.left, curr + 1, depth)
 
    # Right recursive subtree
    right = dfs(root.right, curr + 1, depth)
 
    # If left and right are not null
    if (left != None and right != None):
        return root
 
    # Return left, if left is not null
    # Otherwise return right
    return left if left else right
 
# Function to find the LCA of the
# deepest nodes of the binary tree
def lcaOfDeepestLeaves(root):
   
    # If root is null
    if (not root):
        return None
 
    # Stores the deepest depth
    # of the binary tree
    depth = finddepth(root) - 1
 
    # Return the LCA of the
    # nodes at level depth
    return dfs(root, 0, depth)
 
# Driver Code
if __name__ == '__main__':
   
    # Given Binary Tree
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.right.left.left = Node(8)
    root.right.left.right = Node(9)
 
    print(lcaOfDeepestLeaves(root).data)
 
# This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
 
// Node of a Binary Tree
class Node
{
    public Node left = null;
    public Node right = null;
    public int data;
     
    public Node(int data)
    {
        this.data = data;
    }
}
 
public class GFG{
 
// Function to find the depth
// of the Binary Tree
static int findDepth(Node root)
{
     
    // If root is not null
    if (root == null)
        return 0;
 
    // Left recursive subtree
    int left = findDepth(root.left);
 
    // Right recursive subtree
    int right = findDepth(root.right);
 
    // Returns the maximum depth
    return 1 + Math.Max(left, right);
}
 
// Function to perform the depth
// first search on the binary tree
static Node DFS(Node root, int curr,
                           int depth)
{
     
    // If root is null
    if (root == null)
        return null;
 
    // If curr is equal to depth
    if (curr == depth)
        return root;
 
    // Left recursive subtree
    Node left = DFS(root.left, curr + 1, depth);
 
    // Right recursive subtree
    Node right = DFS(root.right, curr + 1, depth);
 
    // If left and right are not null
    if (left != null && right != null)
        return root;
 
    // Return left, if left is not null
    // Otherwise return right
    return (left != null) ? left : right;
}
 
// Function to find the LCA of the
// deepest nodes of the binary tree
static Node lcaOfDeepestLeaves(Node root)
{
     
    // If root is null
    if (root == null)
        return null;
 
    // Stores the deepest depth
    // of the binary tree
    int depth = findDepth(root) - 1;
 
    // Return the LCA of the
    // nodes at level depth
    return DFS(root, 0, depth);
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given Binary Tree
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
    root.right.left = new Node(6);
    root.right.right = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
 
    Console.WriteLine(lcaOfDeepestLeaves(root).data);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript program for the above approach
     
    // Node of a Binary Tree
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Function to find the depth
    // of the Binary Tree
    function findDepth(root)
    {
 
        // If root is not null
        if (root == null)
            return 0;
 
        // Left recursive subtree
        let left = findDepth(root.left);
 
        // Right recursive subtree
        let right = findDepth(root.right);
 
        // Returns the maximum depth
        return 1 + Math.max(left, right);
    }
 
    // Function to perform the depth
    // first search on the binary tree
    function DFS(root, curr, depth)
    {
 
        // If root is null
        if (root == null)
            return null;
 
        // If curr is equal to depth
        if (curr == depth)
            return root;
 
        // Left recursive subtree
        let left = DFS(root.left, curr + 1, depth);
 
        // Right recursive subtree
        let right = DFS(root.right, curr + 1, depth);
 
        // If left and right are not null
        if (left != null && right != null)
            return root;
 
        // Return left, if left is not null
        // Otherwise return right
        return (left != null) ? left : right;
    }
 
    // Function to find the LCA of the
    // deepest nodes of the binary tree
    function lcaOfDeepestLeaves(root)
    {
 
        // If root is null
        if (root == null)
            return null;
 
        // Stores the deepest depth
        // of the binary tree
        let depth = findDepth(root) - 1;
 
        // Return the LCA of the
        // nodes at level depth
        return DFS(root, 0, depth);
    }
     
    // Given Binary Tree
    let root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
    root.right.left = new Node(6);
    root.right.right = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
  
    document.write(lcaOfDeepestLeaves(root).data);
 
// This code is contributed by suresh07.
</script>


Output: 

6

 

Time Complexity: O(N), where N is the total number of nodes in the binary tree.
Auxiliary Space: O(N),  since N extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments