Monday, January 13, 2025
Google search engine
HomeData Modelling & AILongest subsequence with a given AND value

Longest subsequence with a given AND value

Given an array arr[] and an integer M, the task is to find the longest subsequence with a given AND value M. If there is no such sub-sequence then print 0
Examples: 
 

Input: arr[] = {3, 7, 2, 3}, M = 3 
Output:
Longest sub-sequence with AND value 3 is {3, 7, 3}.
Input: arr[] = {2, 2}, M = 3 
Output:
 

 

Approach: A simple way to solve this will be to generate all the possible sub-sequences and then find the largest among them with required AND value. 
However, for smaller values of M, an approach based on dynamic programming can be used.
Let’s look at the recurrence relation first. 
 

dp[i][curr_and] = max(dp[i + 1][curr_and], dp[i + 1][curr_and & arr[i]] + 1) 
 

Let’s understand the states of DP now. Here, dp[i][curr_and] stores the longest subsequence of subarray arr[i…N-1] such that curr_and & the AND of this subsequence is equal to M. At each step, either the index i can be chosen updating curr_and or it can be rejected.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define maxN 20
#define maxM 64
 
// To store the states of DP
int dp[maxN][maxM];
bool v[maxN][maxM];
 
// Function to return the required length
int findLen(int* arr, int i, int curr,
            int n, int m)
{
    // Base case
    if (i == n) {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i][curr])
        return dp[i][curr];
 
    // Setting the state as solved
    v[i][curr] = 1;
 
    // Recurrence relation
    int l = findLen(arr, i + 1, curr, n, m);
    int r = findLen(arr, i + 1, curr & arr[i],
                    n, m);
    dp[i][curr] = l;
    if (r != -1)
        dp[i][curr] = max(dp[i][curr], r + 1);
    return dp[i][curr];
}
 
// Driver code
int main()
{
    int arr[] = { 3, 7, 2, 3 };
    int n = sizeof(arr) / sizeof(int);
    int m = 3;
 
    int ans = findLen(arr, 0, ((1 << 8) - 1),
                      n, m);
    if (ans == -1)
        cout << 0;
    else
        cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int maxN = 300;
static int maxM = 300;
 
// To store the states of DP
static int dp[][] = new int[maxN][maxM];
static boolean v[][] = new boolean[maxN][maxM];
 
// Function to return the required length
static int findLen(int[] arr, int i,
                   int curr, int n, int m)
{
    // Base case
    if (i == n)
    {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i][curr])
        return dp[i][curr];
 
    // Setting the state as solved
    v[i][curr] = true;
 
    // Recurrence relation
    int l = findLen(arr, i + 1, curr, n, m);
    int r = findLen(arr, i + 1, curr & arr[i], n, m);
    dp[i][curr] = l;
    if (r != -1)
        dp[i][curr] = Math.max(dp[i][curr], r + 1);
    return dp[i][curr];
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 3, 7, 2, 3 };
    int n = arr.length;
    int m = 3;
 
    int ans = findLen(arr, 0, ((1 << 8) - 1), n, m);
    if (ans == -1)
        System.out.print( 0);
    else
        System.out.print( ans);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
import numpy as np
 
maxN = 20
maxM = 256
 
# To store the states of DP
dp = np.zeros((maxN, maxM));
v = np.zeros((maxN, maxM));
 
# Function to return the required length
def findLen(arr, i, curr, n, m) :
 
    # Base case
    if (i == n) :
        if (curr == m) :
            return 0;
        else :
            return -1;
 
    # If the state has been solved before
    # return the value of the state
    if (v[i][curr]) :
        return dp[i][curr];
 
    # Setting the state as solved
    v[i][curr] = 1;
 
    # Recurrence relation
    l = findLen(arr, i + 1, curr, n, m);
    r = findLen(arr, i + 1, curr & arr[i], n, m);
     
    dp[i][curr] = l;
     
    if (r != -1) :
        dp[i][curr] = max(dp[i][curr], r + 1);
         
    return dp[i][curr];
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 3, 7, 2, 3 ];
    n = len(arr);
    m = 3;
 
    ans = findLen(arr, 0, ((1 << 8) - 1), n, m);
     
    if (ans == -1) :
        print(0);
    else :
        print(ans);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
static int maxN = 300;
static int maxM = 300;
 
// To store the states of DP
static int[,] dp = new int[maxN, maxM];
static bool[,] v = new bool[maxN, maxM];
 
// Function to return the required length
static int findLen(int[] arr, int i,
                   int curr, int n, int m)
{
    // Base case
    if (i == n)
    {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i, curr])
        return dp[i, curr];
 
    // Setting the state as solved
    v[i, curr] = true;
 
    // Recurrence relation
    int l = findLen(arr, i + 1, curr, n, m);
    int r = findLen(arr, i + 1, curr & arr[i], n, m);
    dp[i, curr] = l;
    if (r != -1)
        dp[i, curr] = Math.Max(dp[i, curr], r + 1);
    return dp[i, curr];
}
 
// Driver code
public static void Main(String[] args)
{
    int[] arr = { 3, 7, 2, 3 };
    int n = arr.Length;
    int m = 3;
 
    int ans = findLen(arr, 0, ((1 << 8) - 1), n, m);
    if (ans == -1)
        Console.WriteLine(0);
    else
        Console.WriteLine(ans);
}
}
 
// This code is contributed by
// sanjeev2552


Javascript




<script>
 
// Javascript implementation of the approach
var maxN = 20
var maxM = 64
 
// To store the states of DP
var dp = Array.from(Array(maxN), ()=> Array(maxM));
var v = Array.from(Array(maxN), ()=> Array(maxM));
 
// Function to return the required length
function findLen(arr, i, curr, n, m)
{
    // Base case
    if (i == n) {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i][curr])
        return dp[i][curr];
 
    // Setting the state as solved
    v[i][curr] = 1;
 
    // Recurrence relation
    var l = findLen(arr, i + 1, curr, n, m);
    var r = findLen(arr, i + 1, curr & arr[i],
                    n, m);
    dp[i][curr] = l;
    if (r != -1)
        dp[i][curr] = Math.max(dp[i][curr], r + 1);
    return dp[i][curr];
}
 
// Driver code
var arr = [3, 7, 2, 3];
var n = arr.length;
var m = 3;
var ans = findLen(arr, 0, ((1 << 8) - 1),
                  n, m);
if (ans == -1)
    document.write( 0);
else
    document.write( ans);
 
</script>


Output: 

3

 

Time Complexity: O(N * maxVal) where maxVal is the maximum element from the given array.

Auxiliary Space: O(maxN * maxM)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
08 Mar, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments