Friday, December 27, 2024
Google search engine
HomeLanguagesDynamic ProgrammingLongest subsequence having difference atmost K

Longest subsequence having difference atmost K

Given a string S of length N and an integer K, the task is to find the length of longest sub-sequence such that the difference between the ASCII values of adjacent characters in the subsequence is not more than K.

Examples: 

Input: N = 7, K = 2, S = "afcbedg"
Output: 4
Explanation:
Longest special sequence present 
in "afcbedg" is a, c, b, d.
It is special because |a - c| <= 2, 
|c - b| <= 2 and | b-d| <= 2

Input: N = 13, K = 3, S = "neveropen"
Output: 7

Naive approach: A brute force solution is to generate all the possible subsequences of various lengths and compute the maximum length of the valid subsequence. The time complexity will be exponential.

Efficient Approach: An efficient approach is to use the concept Dynamic Programming 

  • Create an array dp of 0’s with size equal to length of string.
  • Create a supporting array max_length with 0’s of size 26.
  • Iterate the string character by character and for each character determine the upper and lower bounds.
  • Iterate nested loop in the range of lower and upper bounds.
  • Fill the dp array with the maximum value between current dp indices and current max_length indices+1.
  • Fill the max_length array with the maximum value between current dp indices and current max_length indices.
  • Longest sub sequence length is the maximum value in dp array.
  • Let us consider an example:

input string s is “afcbedg” and k is 2 
 

  • for 1st iteration value of i is ‘a’ and range of j is (0, 2) 
    and current dp = [1, 0, 0, 0, 0, 0, 0]
  • for 2nd iteration value of i is ‘f’ and range of j is (3, 7) 
    and current dp = [1, 1, 0, 0, 0, 0, 0]
  • for 3rd iteration value of i is ‘c’ and range of j is (0, 4) 
    and current dp = [1, 1, 2, 0, 0, 0, 0]
  • for 4th iteration value of i is ‘b’ and range of j is (0, 3) 
    and current dp = [1, 1, 2, 3, 0, 0, 0]
  • for 5th iteration value of i is ‘e’ and range of j is (2, 6) 
    and current dp = [1, 1, 2, 3, 3, 0, 0]
  • for 6th iteration value of i is ‘d’ and range of j is (1, 5) 
    and current dp = [1, 1, 2, 3, 3, 4, 0]
  • for 7th iteration value of i is ‘g’ and range of j is (4, 8) 
    and current dp = [1, 1, 2, 3, 3, 4, 4]

longest length is the maximum value in dp so maximum length is 4 
 

Below is the implementation of the above approach:  

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// the longest Special Sequence
int longest_subseq(int n, int k, string s)
{
 
    // Creating a list with
    // all 0's of size
    // equal to the length of string
    vector<int> dp(n, 0);
 
    // Supporting list with
    // all 0's of size 26 since
    // the given string consists
    // of only lower case alphabets
    int max_length[26] = {0};
 
    for (int i = 0; i < n; i++)
    {
 
        // Converting the ascii value to
        // list indices
        int curr = s[i] - 'a';
         
        // Determining the lower bound
        int lower = max(0, curr - k);
         
        // Determining the upper bound
        int upper = min(25, curr + k);
         
        // Filling the dp array with values
        for (int j = lower; j < upper + 1; j++)
        {
            dp[i] = max(dp[i], max_length[j] + 1);
        }
        //Filling the max_length array with max
        //length of subsequence till now
        max_length[curr] = max(dp[i], max_length[curr]);
    }
 
    int ans = 0;
 
    for(int i:dp) ans = max(i, ans);
 
    // return the max length of subsequence
    return ans;
}
 
// Driver Code
int main()
{
    string s = "neveropen";
    int n = s.size();
    int k = 3;
    cout << (longest_subseq(n, k, s));
    return 0;
}
 
// This code is contributed by Mohit Kumar


Java




// Java program for the above approach
class GFG
{
 
// Function to find
// the longest Special Sequence
static int longest_subseq(int n, int k, String s)
{
 
    // Creating a list with
    // all 0's of size
    // equal to the length of String
    int []dp = new int[n];
 
    // Supporting list with
    // all 0's of size 26 since
    // the given String consists
    // of only lower case alphabets
    int []max_length = new int[26];
 
    for (int i = 0; i < n; i++)
    {
 
        // Converting the ascii value to
        // list indices
        int curr = s.charAt(i) - 'a';
         
        // Determining the lower bound
        int lower = Math.max(0, curr - k);
         
        // Determining the upper bound
        int upper = Math.min(25, curr + k);
         
        // Filling the dp array with values
        for (int j = lower; j < upper + 1; j++)
        {
            dp[i] = Math.max(dp[i], max_length[j] + 1);
        }
         
        // Filling the max_length array with max
        // length of subsequence till now
        max_length[curr] = Math.max(dp[i], max_length[curr]);
    }
 
    int ans = 0;
 
    for(int i:dp) ans = Math.max(i, ans);
 
    // return the max length of subsequence
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    String s = "neveropen";
    int n = s.length();
    int k = 3;
    System.out.print(longest_subseq(n, k, s));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Function to find
# the longest Special Sequence
def longest_subseq(n, k, s):
   
    # Creating a list with
    # all 0's of size
    # equal to the length of string
    dp = [0] * n
     
    # Supporting list with
    # all 0's of size 26 since
    # the given string consists
    # of only lower case alphabets
    max_length = [0] * 26
 
    for i in range(n):
 
        # Converting the ascii value to
        # list indices
        curr = ord(s[i]) - ord('a')
        # Determining the lower bound
        lower = max(0, curr - k)
        # Determining the upper bound
        upper = min(25, curr + k)
        # Filling the dp array with values
        for j in range(lower, upper + 1):
 
            dp[i] = max(dp[i], max_length[j]+1)
        # Filling the max_length array with max
        # length of subsequence till now
        max_length[curr] = max(dp[i], max_length[curr])
 
    # return the max length of subsequence
    return max(dp)
 
# driver code
def main():
  s = "neveropen"
  n = len(s)
  k = 3
  print(longest_subseq(n, k, s))
 
main()


C#




// C# program for the above approach
using System;
 
class GFG
{
 
// Function to find
// the longest Special Sequence
static int longest_subseq(int n, int k, String s)
{
 
    // Creating a list with
    // all 0's of size
    // equal to the length of String
    int []dp = new int[n];
 
    // Supporting list with
    // all 0's of size 26 since
    // the given String consists
    // of only lower case alphabets
    int []max_length = new int[26];
 
    for (int i = 0; i < n; i++)
    {
 
        // Converting the ascii value to
        // list indices
        int curr = s[i] - 'a';
         
        // Determining the lower bound
        int lower = Math.Max(0, curr - k);
         
        // Determining the upper bound
        int upper = Math.Min(25, curr + k);
         
        // Filling the dp array with values
        for (int j = lower; j < upper + 1; j++)
        {
            dp[i] = Math.Max(dp[i], max_length[j] + 1);
        }
         
        // Filling the max_length array with max
        // length of subsequence till now
        max_length[curr] = Math.Max(dp[i], max_length[curr]);
    }
 
    int ans = 0;
 
    foreach(int i in dp) ans = Math.Max(i, ans);
 
    // return the max length of subsequence
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    String s = "neveropen";
    int n = s.Length;
    int k = 3;
    Console.Write(longest_subseq(n, k, s));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript program for the above approach
 
// Function to find
// the longest Special Sequence
function longest_subseq(n, k, s)
{
 
    // Creating a list with
    // all 0's of size
    // equal to the length of String
    let dp = new Array(n);
   
    // Supporting list with
    // all 0's of size 26 since
    // the given String consists
    // of only lower case alphabets
    let max_length = new Array(26);
       
    for(let i = 0; i < 26; i++)
    {
        max_length[i] = 0;
        dp[i] = 0;
    }
    for (let i = 0; i < n; i++)
    {
   
        // Converting the ascii value to
        // list indices
        let curr = s[i].charCodeAt(0) - 'a'.charCodeAt(0);
           
        // Determining the lower bound
        let lower = Math.max(0, curr - k);
           
        // Determining the upper bound
        let upper = Math.min(25, curr + k);
           
        // Filling the dp array with values
        for (let j = lower; j < upper + 1; j++)
        {
            dp[i] = Math.max(dp[i], max_length[j] + 1);
        }
           
        // Filling the max_length array with max
        // length of subsequence till now
        max_length[curr] = Math.max(dp[i], max_length[curr]);
    }
   
    let ans = 0;
    ans = Math.max(...dp)
   
    // return the max length of subsequence
    return ans;
}
 
// Driver Code
let s = "neveropen";
let n = s.length;
let k = 3;
document.write(longest_subseq(n, k, s));
 
// This code is contributed by unknown2108
</script>


Output: 

7

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments