Given an integer K and a numeric string str, the task is to find the longest subsequence from the given string which is divisible by K.
Examples:
Input: str = “121400”, K = 8
Output: 121400
Explanation:
Since the whole string is divisible by 8, the entire string is the answer.Input: str: “7675437”, K = 64
Output: 64
Explanation:
The longest subsequence from the string which is divisible by 64, is “64” itself.
Approach: The idea is to find all subsequences of the given string and for each subsequence, check if its integer representation is divisible by K or not. Follow the steps below to solve the problem:
- Traverse the string. For every character encountered, two possibilities exists.
- Either consider the current character in the subsequence or not. For both the cases, proceed to the next characters of the string and find the longest subsequence that is divisible by K.
- Compare the longest subsequences obtained above with the current maximum length of longest subsequence and update accordingly.
- Repeat the above steps for every character of the string and finally, print the maximum length obtained.
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to if the integer representation // of the current string is divisible by K bool isdivisible(string& newstr, long long K) { // Stores the integer // representation of the string long long num = 0; for ( int i = 0; i < newstr.size(); i++) { num = num * 10 + newstr[i] - '0' ; } // Check if the num is // divisible by K if (num % K == 0) return true ; else return false ; } // Function to find the longest subsequence // which is divisible by K void findLargestNo(string& str, string& newstr, string& ans, int index, long long K) { if (index == ( int )str.length()) { // If the number is divisible by K if (isdivisible(newstr, K)) { // If current number is the // maximum obtained so far if ((ans < newstr && ans.length() == newstr.length()) || newstr.length() > ans.length()) { ans = newstr; } } return ; } string x = newstr + str[index]; // Include the digit at current index findLargestNo(str, x, ans, index + 1, K); // Exclude the digit at current index findLargestNo(str, newstr, ans, index + 1, K); } // Driver Code int main() { string str = "121400" ; string ans = "" , newstr = "" ; long long K = 8; findLargestNo(str, newstr, ans, 0, K); // Printing the largest number // which is divisible by K if (ans != "" ) cout << ans << endl; // If no number is found // to be divisible by K else cout << -1 << endl; } |
Java
// Java program for the // above approach import java.util.*; import java.lang.*; class GFG{ // Function to if the integer representation // of the current string is divisible by K static boolean isdivisible(StringBuilder newstr, long K) { // Stores the integer // representation of the string long num = 0 ; for ( int i = 0 ; i < newstr.length(); i++) { num = num * 10 + newstr.charAt(i) - '0' ; } // Check if the num is // divisible by K if (num % K == 0 ) return true ; else return false ; } // Function to find the longest // subsequence which is divisible // by K static void findLargestNo(String str, StringBuilder newstr, StringBuilder ans, int index, long K) { if (index == str.length()) { // If the number is divisible by K if (isdivisible(newstr, K)) { // If current number is the // maximum obtained so far if ((newstr.toString().compareTo(ans.toString()) > 0 && ans.length() == newstr.length()) || newstr.length() > ans.length()) { ans.setLength( 0 ); ans.append(newstr); } } return ; } StringBuilder x = new StringBuilder( newstr.toString() + str.charAt(index)); // Include the digit at current index findLargestNo(str, x, ans, index + 1 , K); // Exclude the digit at current index findLargestNo(str, newstr, ans, index + 1 , K); } // Driver code public static void main (String[] args) { String str = "121400" ; StringBuilder ans = new StringBuilder(), newstr = new StringBuilder(); long K = 8 ; findLargestNo(str, newstr, ans, 0 , K); // Printing the largest number // which is divisible by K if (ans.toString() != "" ) System.out.println(ans); // If no number is found // to be divisible by K else System.out.println(- 1 ); } } // This code is contributed by offbeat |
Python3
# Python3 program for the above approach # Function to if the integer representation # of the current string is divisible by K def isdivisible(newstr, K): # Stores the integer # representation of the string num = 0 ; for i in range ( len (newstr)): num = num * 10 + int (newstr[i]) # Check if the num is # divisible by K if (num % K = = 0 ): return True else : return False # Function to find the longest subsequence # which is divisible by K def findLargestNo( str , newstr, ans, index, K): if (index = = len ( str )): # If the number is divisible by K if (isdivisible(newstr, K)): # If current number is the # maximum obtained so far if ((ans < newstr and len (ans) = = len (newstr)) or len (newstr) > len (ans)): ans = newstr return ans x = newstr + str [index]; # Include the digit at current index ans = findLargestNo( str , x, ans, index + 1 , K); # Exclude the digit at current index ans = findLargestNo( str , newstr, ans, index + 1 , K); return ans; # Driver Code str = "121400" ; ans = "" newstr = ""; K = 8 ; ans = findLargestNo( str , newstr, ans, 0 , K); # Printing the largest number # which is divisible by K if (ans ! = "") : print (ans) # If no number is found # to be divisible by K else : print ( - 1 ) # This code is contributed by phasing17 |
C#
// C# program for the above approach using System; using System.Text; class GFG{ // Function to if the integer representation // of the current string is divisible by K static bool isdivisible(StringBuilder newstr, long K) { // Stores the integer representation // of the string long num = 0; for ( int i = 0; i < newstr.Length; i++) { num = num * 10 + newstr[i] - '0' ; } // Check if the num is // divisible by K if (num % K == 0) return true ; else return false ; } // Function to find the longest // subsequence which is divisible // by K static void findLargestNo(String str, StringBuilder newstr, StringBuilder ans, int index, long K) { if (index == str.Length) { // If the number is divisible by K if (isdivisible(newstr, K)) { // If current number is the // maximum obtained so far if ((newstr.ToString().CompareTo(ans.ToString()) > 0 && ans.Length == newstr.Length) || newstr.Length > ans.Length) { ans.EnsureCapacity(0); //.SetLength(0); ans.Append(newstr); } } return ; } StringBuilder x = new StringBuilder( newstr.ToString() + str[index]); // Include the digit at current index findLargestNo(str, x, ans, index + 1, K); // Exclude the digit at current index findLargestNo(str, newstr, ans, index + 1, K); } // Driver code public static void Main(String[] args) { String str = "121400" ; StringBuilder ans = new StringBuilder(), newstr = new StringBuilder(); long K = 8; findLargestNo(str, newstr, ans, 0, K); // Printing the largest number // which is divisible by K if (ans.ToString() != "" ) Console.WriteLine(ans); // If no number is found // to be divisible by K else Console.WriteLine(-1); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program for the above approach // Function to if the integer representation // of the current string is divisible by K function isdivisible(newstr, K) { // Stores the integer // representation of the string var num = 0; for ( var i = 0; i < newstr.length; i++) { num = num * 10 + newstr[i].charCodeAt(0) - '0' .charCodeAt(0); } // Check if the num is // divisible by K if (num % K == 0) return true ; else return false ; } // Function to find the longest subsequence // which is divisible by K function findLargestNo(str, newstr, ans, index, K) { if (index == str.length) { // If the number is divisible by K if (isdivisible(newstr, K)) { // If current number is the // maximum obtained so far if ((ans < newstr && ans.length == newstr.length) || newstr.length > ans.length) { ans = newstr; } } return ans; } var x = newstr + str[index]; // Include the digit at current index ans = findLargestNo(str, x, ans, index + 1, K); // Exclude the digit at current index ans = findLargestNo(str, newstr, ans, index + 1, K); return ans; } // Driver Code var str = "121400" ; var ans = "" , newstr = "" ; var K = 8; ans = findLargestNo(str, newstr, ans, 0, K); // Printing the largest number // which is divisible by K if (ans != "" ) document.write(ans) // If no number is found // to be divisible by K else document.write( -1) // This code is contributed by itsok </script> |
121400
Time Complexity: O(N * 2N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!