Saturday, January 11, 2025
Google search engine
HomeData Modelling & AILongest Subarray with sum differences ≤ K

Longest Subarray with sum differences ≤ K

Given a sorted array arr[] of size N, the task is to find the length of the longest subarray and print the subarray such that the sum of the differences of the maximum element of the chosen subarray with all other elements of that same subarray is 
≤ K.i.e. ∑(amax-ai) ≤ K, for that given subarray.

Examples:

Input: N = 5, arr[] = {1, 4, 5, 6, 10}, K = 4
Output: 3
4 5 6 
Explanation: The subarray is having the difference (6-4)+(6-5)+(6-6)= 2+1+0=3 which is of the longest length.

Input: N = 5, arr[] = {2, 4, 5, 10, 28}, K = 20
Output: 4
2 4 5 10 
Explanation: The subarray is having the difference (10-2)+(10-4)+(10-5)+(10-10) = 8+6+5+0 = 19 which is of the longest length.

Approach: To solve the problem follow the below idea:

We can generate all the subarray and check the difference of the maximum element of the subarray with all other elements of that same subarray and keep updating the subarray with the maximum length

Follow the below steps to solve the problem:

  • Iterate through the array by maintaining 2 pointers which denote the starting and ending point of that subarray
  • Then Iterate through the chosen subarray and check whether the difference as stated above is ≤ K
  • If our required condition matches, then we simply update our max answer.

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the longest subarray
// satisfying the given condition
void findLongestSubarray(int arr[], int n, int k)
{
 
    // Initializing ans to the minimum
    // integer value
    int ans = INT_MIN;
 
    // Initializing the left and right
    // index of the subarray
    int l = 0;
    int r = n - 1;
 
    // Nested loop to iterate over all
    // possible subarrays
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
            int diff_sum = 0;
 
            // Loop to calculate the sum
            // of absolute differences
            for (int k = j; k >= i; k--) {
                diff_sum += abs(arr[j] - arr[k]);
            }
 
            // Checking if the sum of
            // absolute differences is
            // less than or equal to K
            if (diff_sum <= k) {
 
                // Updating ans and the
                // left and of right index
                // the subarray
                ans = max(ans, j - i + 1);
                if (ans == diff_sum) {
                    l = i;
                    r = j;
                }
            }
        }
    }
 
    // Printing the result
    cout << ans << endl;
    for (int i = l; i <= r; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;
}
 
// Driver code
int main()
{
 
    // First array
    int arr1[] = { 1, 4, 5, 6, 10 };
 
    int n = sizeof(arr1) / sizeof(int);
 
    int K = 4;
 
    // Function call
    findLongestSubarray(arr1, n, K);
 
    // Second array
    int arr2[] = { 2, 4, 5, 10, 28 };
    K = 20;
 
    // Function call
    findLongestSubarray(arr2, n, K);
 
    return 0;
}


Java




import java.util.Arrays;
 
class GFG {
    // Function to find the longest subarray
    // satisfying the given condition
    static void findLongestSubarray(int[] arr, int n, int k) {
 
        // Initializing ans to the minimum
        // integer value
        int ans = Integer.MIN_VALUE;
 
        // Initializing the left and right
        // index of the subarray
        int l = 0;
        int r = n - 1;
 
        // Nested loop to iterate over all
        // possible subarrays
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                int diff_sum = 0;
 
                // Loop to calculate the sum
                // of absolute differences
                for (int p = j; p >= i; p--) {
                    diff_sum += Math.abs(arr[j] - arr[p]);
                }
 
                // Checking if the sum of
                // absolute differences is
                // less than or equal to K
                if (diff_sum <= k) {
 
                    // Updating ans and the
                    // left and of right index
                    // the subarray
                    ans = Math.max(ans, j - i + 1);
                    if (ans == diff_sum) {
                        l = i;
                        r = j;
                    }
                }
            }
        }
 
        // Printing the result
        System.out.println(ans);
        for (int i = l; i <= r; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }
    // Nikunj Sonigara
    public static void main(String[] args) {
 
        // First array
        int[] arr1 = { 1, 4, 5, 6, 10 };
        int n = arr1.length;
        int K = 4;
 
        // Function call
        findLongestSubarray(arr1, n, K);
 
        // Second array
        int[] arr2 = { 2, 4, 5, 10, 28 };
        K = 20;
 
        // Function call
        findLongestSubarray(arr2, n, K);
    }
}


Python3




#python code for the above approach:
 
# Function to find the longest subarray satisfying
# the given condition
def find_longest_subarray(arr, n, k):
 
    # Initializing ans to the minimum integer value
    ans = float('-inf')
 
    # Initializing the left and right index of the subarray
    l = 0
    r = n - 1
 
    # Nested loop to iterate over all possible subarrays
    for i in range(n):
        for j in range(i, n):
            diff_sum = 0
 
            # Loop to calculate the sum of absolute differences
            for x in range(j, i - 1, -1):
                diff_sum += abs(arr[j] - arr[x])
 
            # Checking if the sum of absolute differences
            # is less than or equal to K
            if diff_sum <= k:
 
                # Updating ans and the left and right index
                # of the subarray
                ans = max(ans, j - i + 1)
                if ans == diff_sum:
                    l = i
                    r = j
 
    # Printing the result
    print(ans)
    for i in range(l, r + 1):
        print(arr[i], end=" ")
    print()
 
# Driver code
def main():
 
    # First array
    arr1 = [1, 4, 5, 6, 10]
    n = len(arr1)
    k = 4
 
    # Function call
    find_longest_subarray(arr1, n, k)
 
    # Second array
    arr2 = [2, 4, 5, 10, 28]
    k = 20
 
    # Function call
    find_longest_subarray(arr2, n, k)
 
main()


C#




using System;
 
class Program
{
   
  // Function to find the longest subarray
  // satisfying the given condition
    static void FindLongestSubarray(int[] arr, int n, int k)
    {
        // Initializing ans to the minimum
        // integer value
        int ans = int.MinValue;
       
        // Initializing the left and right
        // index of the subarray
        int l = 0;
        int r = n - 1;
         // Nested loop to iterate over all
        // possible subarrays
        for (int i = 0; i < n; i++)
        {
            for (int j = i; j < n; j++)
            {
                int diffSum = 0;
 
                for (int x = j; x >= i; x--)
                {
                    diffSum += Math.Abs(arr[j] - arr[x]);
                }
 
                if (diffSum <= k)
                {
                    ans = Math.Max(ans, j - i + 1);
                    if (ans == diffSum)
                    {
                        l = i;
                        r = j;
                    }
                }
            }
        }
 
      // Printing the result
        Console.WriteLine(ans);
        for (int i = l; i <= r; i++)
        {
            Console.Write(arr[i] + " ");
        }
        Console.WriteLine();
    }
 
    static void Main()
    {
        int[] arr1 = { 1, 4, 5, 6, 10 };
        int n = arr1.Length;
        int k = 4;
    // function call
        FindLongestSubarray(arr1, n, k);
 
        int[] arr2 = { 2, 4, 5, 10, 28 };
        k = 20;
    // function call
        FindLongestSubarray(arr2, n, k);
    }
}


Javascript




// Function to find the longest subarray
// satisfying the given condition
function findLongestSubarray(arr, n, k) {
     
    // Initializing ans to the minimum
    // integer value
    let ans = Number.MIN_SAFE_INTEGER;
     
    // Initializing the left and right
    // index of the subarray
    let l = 0;
    let r = n - 1;
     
    // Nested loop to iterate over all
    // possible subarrays
    for (let i = 0; i < n; i++) {
        for (let j = i; j < n; j++) {
            let diff_sum = 0;
             
            for (let k = j; k >= i; k--) {
                diff_sum += Math.abs(arr[j] - arr[k]);
            }
             
            if (diff_sum <= k) {
                ans = Math.max(ans, j - i + 1);
                if (ans === diff_sum) {
                    l = i;
                    r = j;
                }
            }
        }
    }
     
    // Printing the result
    console.log(ans);
    for (let i = l; i <= r; i++) {
        console.log(arr[i] + " ");
    }
    console.log();
}
 
let arr1 = [1, 4, 5, 6, 10];
let n = arr1.length;
let K = 4;
// Function call
findLongestSubarray(arr1, n, K);
 
 
let arr2 = [2, 4, 5, 10, 28];
let n2 = arr2.length;
let K2 = 20;
// Function call
findLongestSubarray(arr2, n2, K2);


Output

3
4 5 6 
4
2 4 



Time Complexity: O(N3)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments