Thursday, December 26, 2024
Google search engine
HomeData Modelling & AILongest subarray whose elements can be made equal by maximum K increments

Longest subarray whose elements can be made equal by maximum K increments

Given an array arr[] of positive integers of size N and a positive integer K, the task is to find the maximum possible length of a subarray which can be made equal by adding some integer value to each element of the sub-array such that the sum of the added elements does not exceed K.

Examples: 

Input: N = 5, arr[] = {1, 4, 9, 3, 6}, K = 9 
Output:
Explanation: 
{1, 4} : {1+3, 4} = {4, 4} 
{4, 9} : {4+5, 9} = {9, 9} 
{3, 6} : {3+3, 6} = {6, 6} 
{9, 3, 6} : {9, 3+6, 6+3} = {9, 9, 9} 
Hence, the maximum length of such a subarray is 3.

Input: N = 6, arr[] = {2, 4, 7, 3, 8, 5}, K = 10 
Output:

Approach: This problem can be solved by using dynamic programming

  • Initialize: 
    • dp[]: Stores the sum of elements that are added to the subarray.
    • deque: Stores the indices of the maximum element for each subarray.
    • pos: Index of the current position of the subarray.
    • ans: Length of the maximum subarray.
    • mx: Maximum element of a subarray
    • pre: Previous index of the current subarray.
  • Traverse the array and check if the deque is empty or not. If yes, then update the maximum element and the index of the maximum element along with the indices of pre and pos.
  • Check if the currently added element is greater than K. If yes, then remove it from dp[] array and update the indices of pos and pre.
  • Finally, update the maximum length of the valid sub-array.

Below is the implementation of the above approach: 

C++




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum
// possible length of subarray
int validSubArrLength(int arr[],
                      int N, int K)
{
    // Stores the sum of elements
    // that needs to be added to
    // the sub array
    int dp[N + 1];
 
    // Stores the index of the
    // current position of subarray
    int pos = 0;
 
    // Stores the maximum
    // length of subarray.
    int ans = 0;
 
    // Maximum element from
    // each subarray length
    int mx = 0;
 
    // Previous index of the
    // current subarray of
    // maximum length
    int pre = 0;
 
    // Deque to store the indices
    // of maximum element of
    // each sub array
    deque<int> q;
 
    // For each array element,
    // find the maximum length of
    // required subarray
    for (int i = 0; i < N; i++) {
        // Traverse the deque and
        // update the index of
        // maximum element.
        while (!q.empty()
               && arr[q.back()] < arr[i])
 
            q.pop_back();
 
        q.push_back(i);
 
        // If it is first element
        // then update maximum
        // and dp[]
        if (i == 0) {
            mx = arr[i];
            dp[i] = arr[i];
        }
 
        // Else check if current
        // element exceeds max
        else if (mx <= arr[i]) {
            // Update max and dp[]
            dp[i] = dp[i - 1] + arr[i];
            mx = arr[i];
        }
 
        else {
            dp[i] = dp[i - 1] + arr[i];
        }
 
        // Update the index of the
        // current maximum length
        // subarray
        if (pre == 0)
            pos = 0;
        else
            pos = pre - 1;
 
        // While current element
        // being added to dp[] array
        // exceeds K
        while ((i - pre + 1) * mx
                       - (dp[i] - dp[pos])
                   > K
               && pre < i) {
 
            // Update index of
            // current position and
            // the previous position
            pos = pre;
            pre++;
 
            // Remove elements
            // from deque and
            // update the
            // maximum element
            while (!q.empty()
                   && q.front() < pre
                   && pre < i) {
 
                q.pop_front();
                mx = arr[q.front()];
            }
        }
 
        // Update the maximum length
        // of the required subarray.
        ans = max(ans, i - pre + 1);
    }
    return ans;
}
 
// Driver Program
int main()
{
    int N = 6;
    int K = 8;
    int arr[] = { 2, 7, 1, 3, 4, 5 };
    cout << validSubArrLength(arr, N, K);
    return 0;
}


Java




// Java code for the above approach
import java.util.*;
 
class GFG{
 
// Function to find maximum
// possible length of subarray
static int validSubArrLength(int arr[],
                             int N, int K)
{
    // Stores the sum of elements
    // that needs to be added to
    // the sub array
    int []dp = new int[N + 1];
 
    // Stores the index of the
    // current position of subarray
    int pos = 0;
 
    // Stores the maximum
    // length of subarray.
    int ans = 0;
 
    // Maximum element from
    // each subarray length
    int mx = 0;
 
    // Previous index of the
    // current subarray of
    // maximum length
    int pre = 0;
 
    // Deque to store the indices
    // of maximum element of
    // each sub array
    Deque<Integer> q = new LinkedList<>();
 
    // For each array element,
    // find the maximum length of
    // required subarray
    for(int i = 0; i < N; i++)
    {
         
       // Traverse the deque and
       // update the index of
       // maximum element.
       while (!q.isEmpty() &&
               arr[q.getLast()] < arr[i])
           q.removeLast();
       q.add(i);
        
       // If it is first element
       // then update maximum
       // and dp[]
       if (i == 0)
       {
           mx = arr[i];
           dp[i] = arr[i];
       }
        
       // Else check if current
       // element exceeds max
       else if (mx <= arr[i])
       {
            
           // Update max and dp[]
           dp[i] = dp[i - 1] + arr[i];
           mx = arr[i];
       }
       else
       {
           dp[i] = dp[i - 1] + arr[i];
       }
        
       // Update the index of the
       // current maximum length
       // subarray
       if (pre == 0)
           pos = 0;
       else
           pos = pre - 1;
        
       // While current element
       // being added to dp[] array
       // exceeds K
       while ((i - pre + 1) * mx -
          (dp[i] - dp[pos]) > K && pre < i)
       {
            
           // Update index of
           // current position and
           // the previous position
           pos = pre;
           pre++;
            
           // Remove elements from
           // deque and update the
           // maximum element
           while (!q.isEmpty() &&
                   q.peek() < pre && pre < i)
           {
               q.removeFirst();
               mx = arr[q.peek()];
           }
       }
        
       // Update the maximum length
       // of the required subarray.
       ans = Math.max(ans, i - pre + 1);
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 6;
    int K = 8;
    int arr[] = { 2, 7, 1, 3, 4, 5 };
     
    System.out.print(validSubArrLength(arr, N, K));
}
}
 
// This code is contributed by amal kumar choubey


Python3




# Python3 code for the above approach
 
# Function to find maximum
# possible length of subarray
def validSubArrLength(arr, N, K):
     
    # Stores the sum of elements
    # that needs to be added to
    # the sub array
    dp = [0 for i in range(N + 1)]
 
    # Stores the index of the
    # current position of subarray
    pos = 0
 
    # Stores the maximum
    # length of subarray.
    ans = 0
 
    # Maximum element from
    # each subarray length
    mx = 0
 
    # Previous index of the
    # current subarray of
    # maximum length
    pre = 0
 
    # Deque to store the indices
    # of maximum element of
    # each sub array
    q = []
 
    # For each array element,
    # find the maximum length of
    # required subarray
    for i in range(N):
         
        # Traverse the deque and
        # update the index of
        # maximum element.
        while (len(q) and arr[len(q) - 1] < arr[i]):
            q.remove(q[len(q) - 1])
 
        q.append(i)
 
        # If it is first element
        # then update maximum
        # and dp[]
        if (i == 0):
            mx = arr[i]
            dp[i] = arr[i]
 
        # Else check if current
        # element exceeds max
        elif (mx <= arr[i]):
             
            # Update max and dp[]
            dp[i] = dp[i - 1] + arr[i]
            mx = arr[i]
 
        else:
            dp[i] = dp[i - 1] + arr[i]
 
        # Update the index of the
        # current maximum length
        # subarray
        if (pre == 0):
            pos = 0
        else:
            pos = pre - 1
 
        # While current element
        # being added to dp[] array
        # exceeds K
        while ((i - pre + 1) *
               mx - (dp[i] - dp[pos]) > K and
              pre < i):
                   
            # Update index of
            # current position and
            # the previous position
            pos = pre
            pre += 1
 
            # Remove elements
            # from deque and
            # update the
            # maximum element
            while (len(q) and
                   q[0] < pre and
                   pre < i):
                q.remove(q[0])
                mx = arr[q[0]]
 
        # Update the maximum length
        # of the required subarray.
        ans = max(ans, i - pre + 1)
         
    return ans
 
# Driver code
if __name__ == '__main__':
     
    N = 6
    K = 8
     
    arr =  [ 2, 7, 1, 3, 4, 5 ]
     
    print(validSubArrLength(arr, N, K))
 
# This code is contributed by ipg2016107


Javascript




<script>
 
// Javascript code for the above approach
 
// Function to find maximum
// possible length of subarray
function validSubArrLength(arr, N, K)
{
    // Stores the sum of elements
    // that needs to be added to
    // the sub array
    var dp = Array(N+1);
 
    // Stores the index of the
    // current position of subarray
    var pos = 0;
 
    // Stores the maximum
    // length of subarray.
    var ans = 0;
 
    // Maximum element from
    // each subarray length
    var mx = 0;
 
    // Previous index of the
    // current subarray of
    // maximum length
    var pre = 0;
 
    // Deque to store the indices
    // of maximum element of
    // each sub array
    var q = [];
 
    // For each array element,
    // find the maximum length of
    // required subarray
    for (var i = 0; i < N; i++) {
        // Traverse the deque and
        // update the index of
        // maximum element.
        while (q.length!=0
               && arr[q[q.length-1]] < arr[i])
 
            q.pop();
 
        q.push(i);
 
        // If it is first element
        // then update maximum
        // and dp[]
        if (i == 0) {
            mx = arr[i];
            dp[i] = arr[i];
        }
 
        // Else check if current
        // element exceeds max
        else if (mx <= arr[i]) {
            // Update max and dp[]
            dp[i] = dp[i - 1] + arr[i];
            mx = arr[i];
        }
 
        else {
            dp[i] = dp[i - 1] + arr[i];
        }
 
        // Update the index of the
        // current maximum length
        // subarray
        if (pre == 0)
            pos = 0;
        else
            pos = pre - 1;
 
        // While current element
        // being added to dp[] array
        // exceeds K
        while ((i - pre + 1) * mx
                       - (dp[i] - dp[pos])
                   > K
               && pre < i) {
 
            // Update index of
            // current position and
            // the previous position
            pos = pre;
            pre++;
 
            // Remove elements
            // from deque and
            // update the
            // maximum element
            while (q.length!=0
                   && q[0] < pre
                   && pre < i) {
 
                q.shift();
                mx = arr[q[0]];
            }
        }
 
        // Update the maximum length
        // of the required subarray.
        ans = Math.max(ans, i - pre + 1);
    }
    return ans;
}
 
// Driver Program
var N = 6;
var K = 8;
var arr = [2, 7, 1, 3, 4, 5];
document.write( validSubArrLength(arr, N, K));
 
 
</script>


C#




// C# program to implement above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to find maximum
    // possible length of subarray
    static int validSubArrLength(int[] arr, int N, int K)
    {
        // Stores the sum of elements
        // that needs to be added to
        // the sub array
        int[] dp = new int[N + 1];
 
        // Stores the index of the
        // current position of subarray
        int pos = 0;
 
        // Stores the maximum
        // length of subarray.
        int ans = 0;
 
        // Maximum element from
        // each subarray length
        int mx = 0;
 
        // Previous index of the
        // current subarray of
        // maximum length
        int pre = 0;
 
        // Deque to store the indices
        // of maximum element of
        // each sub array
        List<int> q = new List<int>();
 
        // For each array element,
        // find the maximum length of
        // required subarray
        for(int i = 0 ; i < N ; i++)
        {
             
            // Traverse the deque and
            // update the index of
            // maximum element.
            while (q.Count > 0 && arr[q[q.Count - 1]] < arr[i]){
                q.RemoveAt(q.Count - 1);
            }
            q.Add(i);
                 
            // If it is first element
            // then update maximum
            // and dp[]
            if (i == 0)
            {
                mx = arr[i];
                dp[i] = arr[i];
            }
                 
            // Else check if current
            // element exceeds max
            else if (mx <= arr[i])
            {
                     
                // Update max and dp[]
                dp[i] = dp[i - 1] + arr[i];
                mx = arr[i];
            }
            else
            {
                dp[i] = dp[i - 1] + arr[i];
            }
                 
            // Update the index of the
            // current maximum length
            // subarray
            if (pre == 0)
                pos = 0;
            else
                pos = pre - 1;
                 
            // While current element
            // being added to dp[] array
            // exceeds K
            while ((i - pre + 1) * mx - (dp[i] - dp[pos]) > K && pre < i)
            {
                     
                // Update index of
                // current position and
                // the previous position
                pos = pre;
                pre++;
                     
                // Remove elements from
                // deque and update the
                // maximum element
                while (q.Count > 0 && q[0] < pre && pre < i)
                {
                    q.RemoveAt(0);
                    mx = arr[q[0]];
                }
            }
                 
            // Update the maximum length
            // of the required subarray.
            ans = Math.Max(ans, i - pre + 1);
        }
        return ans;
    }
 
    // Driver code
    public static void Main(string[] args){
 
        int N = 6;
        int K = 8;
        int[] arr = new int[]{ 2, 7, 1, 3, 4, 5 };
         
        Console.WriteLine(validSubArrLength(arr, N, K));
 
    }
}


Output: 

4

 

Time Complexity: O(N2
Auxiliary Space Complexity: O(N) 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments