Monday, December 30, 2024
Google search engine
HomeData Modelling & AILongest subarray having sum K | Set 2

Longest subarray having sum K | Set 2

Given an array arr[] of size N containing integers. The task is to find the length of the longest sub-array having sum equal to the given value K.

Examples: 

Input: arr[] = {2, 3, 4, 2, 1, 1}, K = 10 
Output:
Explanation: 
The subarray {3, 4, 2, 1} gives summation as 10.

Input: arr[] = {6, 8, 14, 9, 4, 11, 10}, K = 13 
Output:
Explanation: 
The subarray {9, 4} gives summation as 13. 
 

Naive Approach: Please refer to this article.
Time Complexity: O(N2
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Binary Search to find the subarray of maximum length having sum K. Below are the steps:

  1. Create a prefix sum array(say pref[]) from the given array arr[].
  2. For each element in the prefix array pref[] do Binary Search: 
    • Initialize ans, start and end variables as -1, 0, and N respectively.
    • Find the middle index(say mid).
    • If pref[mid] – val ? K then update the start variable to mid + 1 and ans to mid.
    • Else update the end variable to mid – 1.
  3. Return the value of ans from the above binary search.
  4. If current subarray length is less than (ans – i), then update the maximum length to (ans – i).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// To store the prefix sum array
vector<int> v;
 
// Function for searching the
// lower bound of the subarray
int bin(int val, int k, int n)
{
    int lo = 0;
    int hi = n;
    int mid;
    int ans = -1;
 
    // Iterate until low less
    // than equal to high
    while (lo <= hi) {
        mid = lo + (hi - lo) / 2;
 
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v[mid] - val <= k) {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
 
    // Return the final answer
    return ans;
}
 
// Function to find the length of
// subarray with sum K
void findSubarraySumK(int arr[], int N, int K)
{
 
    // Initialize sum to 0
    int sum = 0;
    v.push_back(0);
 
    // Push the prefix sum of the
    // array arr[] in prefix[]
    for (int i = 0; i < N; i++) {
 
        sum += arr[i];
        v.push_back(sum);
    }
 
    int l = 0, ans = 0, r;
 
    for (int i = 0; i < N; i++) {
 
        // Search r for each i
        r = bin(v[i], K, N);
 
        // Update ans
        ans = max(ans, r - i);
    }
 
    // Print the length of subarray
    // found in the array
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Given sum K
    int K = 13;
 
    // Function Call
    findSubarraySumK(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    // To store the prefix sum array
    static Vector<Integer> v = new Vector<Integer>();
 
    // Function for searching the
    // lower bound of the subarray
    static int bin(int val, int k, int n)
    {
        int lo = 0;
        int hi = n;
        int mid;
        int ans = -1;
 
        // Iterate until low less
        // than equal to high
        while (lo <= hi) {
            mid = lo + (hi - lo) / 2;
 
            // For each mid finding sum
            // of sub array less than
            // or equal to k
            if (v.get(mid) - val <= k) {
                lo = mid + 1;
                ans = mid;
            }
            else
                hi = mid - 1;
        }
 
        // Return the final answer
        return ans;
    }
 
    // Function to find the length of
    // subarray with sum K
    static void findSubarraySumK(int arr[], int N, int K)
    {
 
        // Initialize sum to 0
        int sum = 0;
        v.add(0);
 
        // Push the prefix sum of the
        // array arr[] in prefix[]
        for (int i = 0; i < N; i++) {
            sum += arr[i];
            v.add(sum);
        }
 
        int l = 0, ans = 0, r;
 
        for (int i = 0; i < v.size(); i++) {
 
            // Search r for each i
            r = bin(v.get(i), K, N);
 
            // Update ans
            ans = Math.max(ans, r - i);
        }
 
        // Print the length of subarray
        // found in the array
        System.out.print(ans);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given array arr[]
        int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
 
        int N = arr.length;
 
        // Given sum K
        int K = 13;
 
        // Function call
        findSubarraySumK(arr, N, K);
    }
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
 
# To store the prefix sum1 array
v = []
 
# Function for searching the
# lower bound of the subarray
 
 
def bin1(val, k, n):
 
    global v
    lo = 0
    hi = n
    mid = 0
    ans = -1
 
    # Iterate until low less
    # than equal to high
    while (lo <= hi):
        mid = lo + ((hi - lo) // 2)
 
        # For each mid finding sum1
        # of sub array less than
        # or equal to k
        if (v[mid] - val <= k):
            lo = mid + 1
            ans = mid
        else:
            hi = mid - 1
 
    # Return the final answer
    return ans
 
# Function to find the length of
# subarray with sum1 K
 
 
def findSubarraysum1K(arr, N, K):
 
    global v
 
    # Initialize sum1 to 0
    sum1 = 0
    v.append(0)
 
    # Push the prefix sum1 of the
    # array arr[] in prefix[]
    for i in range(N):
        sum1 += arr[i]
        v.append(sum1)
 
    l = 0
    ans = 0
    r = 0
 
    for i in range(len(v)):
 
        # Search r for each i
        r = bin1(v[i], K, N)
 
        # Update ans
        ans = max(ans, r - i)
 
    # Print the length of subarray
    # found in the array
    print(ans)
 
 
# Driver Code
if __name__ == '__main__':
 
    # Given array arr[]
    arr = [6, 8, 14, 9, 4, 11, 10]
 
    N = len(arr)
 
    # Given sum1 K
    K = 13
 
    # Function Call
    findSubarraysum1K(arr, N, K)
 
# This code is contributed by ipg2016107


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
    // To store the prefix sum array
    static List<int> v = new List<int>();
 
    // Function for searching the
    // lower bound of the subarray
    static int bin(int val, int k, int n)
    {
        int lo = 0;
        int hi = n;
        int mid;
        int ans = -1;
 
        // Iterate until low less
        // than equal to high
        while (lo <= hi) {
            mid = lo + (hi - lo) / 2;
 
            // For each mid finding sum
            // of sub array less than
            // or equal to k
            if (v[mid] - val <= k) {
                lo = mid + 1;
                ans = mid;
            }
            else
                hi = mid - 1;
        }
 
        // Return the final answer
        return ans;
    }
 
    // Function to find the length of
    // subarray with sum K
    static void findSubarraySumK(int[] arr, int N, int K)
    {
 
        // Initialize sum to 0
        int sum = 0;
        v.Add(0);
 
        // Push the prefix sum of the
        // array []arr in prefix[]
        for (int i = 0; i < N; i++) {
            sum += arr[i];
            v.Add(sum);
        }
 
        int ans = 0, r;
 
        for (int i = 0; i < v.Count; i++) {
 
            // Search r for each i
            r = bin(v[i], K, N);
 
            // Update ans
            ans = Math.Max(ans, r - i);
        }
 
        // Print the length of subarray
        // found in the array
        Console.Write(ans);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
 
        // Given array []arr
        int[] arr = { 6, 8, 14, 9, 4, 11, 10 };
 
        int N = arr.Length;
 
        // Given sum K
        int K = 13;
 
        // Function call
        findSubarraySumK(arr, N, K);
    }
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program for the above approach
 
// To store the prefix sum array
let v = [];
 
// Function for searching the
// lower bound of the subarray
function bin(val, k, n)
{
    let lo = 0;
    let hi = n;
    let mid;
    let ans = -1;
 
    // Iterate until low less
    // than equal to high
    while (lo <= hi) {
        mid = lo + parseInt((hi - lo) / 2);
 
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v[mid] - val <= k) {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
 
    // Return the final answer
    return ans;
}
 
// Function to find the length of
// subarray with sum K
function findSubarraySumK(arr, N, K)
{
 
    // Initialize sum to 0
    let sum = 0;
    v.push(0);
 
    // Push the prefix sum of the
    // array arr[] in prefix[]
    for (let i = 0; i < N; i++) {
 
        sum += arr[i];
        v.push(sum);
    }
 
    let l = 0, ans = 0, r;
 
    for (let i = 0; i < N; i++) {
 
        // Search r for each i
        r = bin(v[i], K, N);
 
        // Update ans
        ans = Math.max(ans, r - i);
    }
 
    // Print the length of subarray
    // found in the array
    document.write(ans);
}
 
// Driver Code
    // Given array arr[]
    let arr = [ 6, 8, 14, 9, 4, 11, 10 ];
 
    let N = arr.length;
 
    // Given sum K
    let K = 13;
 
    // Function Call
    findSubarraySumK(arr, N, K);
     
</script>


Output

2

Time Complexity: O(N*log2N) 
Auxiliary Space: O(N)

Efficient approach: For a O(N) approach, please refer to the efficient approach of this article.

Hashmap approach in python:

Approach:

  • Initialize a hashmap prefix_sum with initial key-value pair of 0: -1. The keys in this hashmap represent the prefix sum of the elements in the array till a certain index, and the values represent the index at which that prefix sum was first seen.
  • Initialize curr_sum and max_len to 0.
  • Traverse through the array using a loop and at each iteration, update the curr_sum by adding the current element.
  • Check if curr_sum – K is present in the prefix_sum hashmap. If it is, then update max_len to be the maximum of its current value and i – prefix_sum[curr_sum – K], where i is the current index.
  • Check if curr_sum is not already present in the prefix_sum hashmap. If it is not, then add a new key-value pair to the hashmap with curr_sum as the key and i as the value.
  • Return max_len.

Python3




def longest_subarray_sum(arr, K):
    n = len(arr)
    prefix_sum = {0: -1}
    curr_sum = 0
    max_len = 0
 
    for i in range(n):
        curr_sum += arr[i]
        if curr_sum - K in prefix_sum:
            max_len = max(max_len, i - prefix_sum[curr_sum - K])
        if curr_sum not in prefix_sum:
            prefix_sum[curr_sum] = i
 
    return max_len
 
# example usage
arr1 = [2, 3, 4, 2, 1, 1]
K1 = 10
print("Longest subarray length with sum", K1, "in", arr1, "is:", longest_subarray_sum(arr1, K1)) # output: 4
 
arr2 = [6, 8, 14, 9, 4, 11, 10]
K2 = 13
print("Longest subarray length with sum", K2, "in", arr2, "is:", longest_subarray_sum(arr2, K2)) # output: 2


Output

Longest subarray length with sum 10 in [2, 3, 4, 2, 1, 1] is: 4
Longest subarray length with sum 13 in [6, 8, 14, 9, 4, 11, 10] is: 2

The time complexity of this approach is O(n) as we are traversing through the array only once, 
the space complexity is O(n) as we are using a hashmap to store prefix sums.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments