Monday, January 6, 2025
Google search engine
HomeData Modelling & AILongest sub-array having sum k

Longest sub-array having sum k

Given an array arr[] of size n containing integers. The problem is to find the length of the longest sub-array having sum equal to the given value k.

Examples: 

Input: arr[] = { 10, 5, 2, 7, 1, 9 }, k = 15
Output: 4
Explanation: The sub-array is {5, 2, 7, 1}.

Input: arr[] = {-5, 8, -14, 2, 4, 12}, k = -5
Output: 5

Recommended Practice

Naive Approach: Consider the sum of all the sub-arrays and return the length of the longest sub-array having the sum ‘k’. Time Complexity is of O(n^2).

Implementation:

C++




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// function to find the length of longest
// subarray having sum k
int lenOfLongSubarr(int arr[], int N, int K)
{
 
    // Variable to store the answer
    int maxlength = 0;
 
    for (int i = 0; i < N; i++) {
 
        // Variable to store sum of subarrays
        int Sum = 0;
 
        for (int j = i; j < N; j++) {
 
            // Storing sum of subarrays
            Sum += arr[j];
 
            // if Sum equals K
            if (Sum == K) {
 
                // Update maxLength
                maxlength = max(maxlength, j - i + 1);
            }
        }
    }
 
    // Return the maximum length
    return maxlength;
}
 
// Driver Code
int main()
{
 
    // Given input
    int arr[] = { 10, 5, 2, 7, 1, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 15;
 
    // Function Call
    cout << "Length = " << lenOfLongSubarr(arr, n, k);
 
    return 0;
}
 
// This code is contributed by Arpit Jain


Java




// Java implementation to find the length
// of longest subarray having sum k
import java.io.*;
import java.util.*;
 
class GFG {
 
  // function to find the length of longest
  // subarray having sum k
  static int lenOfLongSubarr(int[] arr, int n, int k)
  {
    int maxlength = 0;
 
    for (int i = 0; i < n; i++) {
 
      // Variable to store sum of subarrays
      int Sum = 0;
 
      for (int j = i; j < n; j++) {
 
        // Storing sum of subarrays
        Sum += arr[j];
 
        // if Sum equals K
        if (Sum == k) {
 
          // Update maxLength
          maxlength = Math.max(maxlength, j - i + 1);
        }
      }
    }
 
    // Return the maximum length
    return maxlength;         
  }
 
  // Driver code
  public static void main(String args[])
  {
    int[] arr = {10, 5, 2, 7, 1, 9};
    int n = arr.length;
    int k = 15;
    System.out.println("Length = " +
                       lenOfLongSubarr(arr, n, k));
  }
}
 
// This code is contributed by saurabhdalal0001.


Python3




# Python3 code for the above approach
 
# function to find the length of longest
# subarray having sum k
def lenOfLongSubarr(arr, N, K):
   
    # Variable to store the answer
    maxlength = 0
 
    for i in range(0,N):
 
        # Variable to store sum of subarrays
        Sum = 0
 
        for j in range(i,N):
 
            # Storing sum of subarrays
            Sum += arr[j]
 
            # if Sum equals K
            if (Sum == K):
 
                # Update maxLength
                maxlength = max(maxlength, j - i + 1)
 
    # Return the maximum length
    return maxlength
 
# Driver Code
# Given input
arr = [ 10, 5, 2, 7, 1, 9 ]
n = len(arr)
k = 15
 
# Function Call
print("Length = " , lenOfLongSubarr(arr, n, k))
 
# This code is contributed by akashish__


C#




// C# implementation to find the length
// of longest subarray having sum k
using System;
 
public class GFG {
 
  // function to find the length of longest
  // subarray having sum k
  static int lenOfLongSubarr(int[] arr, int n, int k)
  {
    int maxlength = 0;
 
    for (int i = 0; i < n; i++) {
 
      // Variable to store sum of subarrays
      int Sum = 0;
 
      for (int j = i; j < n; j++) {
 
        // Storing sum of subarrays
        Sum += arr[j];
 
        // if Sum equals K
        if (Sum == k) {
 
          // Update maxLength
          maxlength
            = Math.Max(maxlength, j - i + 1);
        }
      }
    }
 
    // Return the maximum length
    return maxlength;
  }
 
  static public void Main()
  {
 
    // Code
    int[] arr = { 10, 5, 2, 7, 1, 9 };
    int n = arr.Length;
    int k = 15;
    Console.WriteLine("Length = "
                      + lenOfLongSubarr(arr, n, k));
  }
}
 
// This code is contributed by lokeshmvs21.


Javascript




// JS code for the above approach
 
// function to find the length of longest
// subarray having sum k
function lenOfLongSubarr(arr, N,  K)
{
 
    // Variable to store the answer
    let maxlength = 0;
 
    for (let i = 0; i < N; i++) {
 
        // Variable to store sum of subarrays
        let Sum = 0;
 
        for (let j = i; j < N; j++) {
 
            // Storing sum of subarrays
            Sum += arr[j];
 
            // if Sum equals K
            if (Sum == K) {
 
                // Update maxLength
                maxlength = Math.max(maxlength, j - i + 1);
            }
        }
    }
 
    // Return the maximum length
    return maxlength;
}
 
// Driver Code
// Given input
let arr = [ 10, 5, 2, 7, 1, 9 ];
let n = arr.length;
let k = 15;
 
// Function Call
console.log( "Length = " , lenOfLongSubarr(arr, n, k));
 
 
// This code is contributed by akashish__


Output

Length = 4

Time Complexity: O(N2), for calculating the sum of all subarrays.
Auxiliary Space: O(1), as constant extra space is required.

Efficient Approach: 

Following the below steps to solve the problem:

  • Initialize sum = 0 and maxLen = 0.
  • Create a hash table having (sum, index) tuples.
  • For i = 0 to n-1, perform the following steps:
    • Accumulate arr[i] to sum.
    • If sum == k, update maxLen = i+1.
    • Check whether sum is present in the hash table or not. If not present, then add it to the hash table as (sum, i) pair.
    • Check if (sum-k) is present in the hash table or not. If present, then obtain index of (sum-k) from the hash table as index. Now check if maxLen < (i-index), then update maxLen = (i-index).
  • Return maxLen.

Implementation:

C++




// C++ implementation to find the length
// of longest subarray having sum k
#include <bits/stdc++.h>
using namespace std;
 
// function to find the length of longest
// subarray having sum k
int lenOfLongSubarr(int arr[],
                    int n,
                    int k)
{
 
    // unordered_map 'um' implemented
    // as hash table
    unordered_map<int, int> um;
    int sum = 0, maxLen = 0;
 
    // traverse the given array
    for (int i = 0; i < n; i++) {
 
        // accumulate sum
        sum += arr[i];
 
        // when subarray starts from index '0'
        if (sum == k)
            maxLen = i + 1;
 
        // make an entry for 'sum' if it is
        // not present in 'um'
        if (um.find(sum) == um.end())
            um[sum] = i;
 
        // check if 'sum-k' is present in 'um'
        // or not
        if (um.find(sum - k) != um.end()) {
 
            // update maxLength
            if (maxLen < (i - um[sum - k]))
                maxLen = i - um[sum - k];
        }
    }
 
    // required maximum length
    return maxLen;
}
 
// Driver Code
int main()
{
    int arr[] = {10, 5, 2, 7, 1, 9};
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 15;
    cout << "Length = "
         << lenOfLongSubarr(arr, n, k);
    return 0;
}


Java




// Java implementation to find the length
// of longest subarray having sum k
import java.io.*;
import java.util.*;
 
class GFG {
 
      // function to find the length of longest
      // subarray having sum k
      static int lenOfLongSubarr(int[] arr, int n, int k)
      {
             // HashMap to store (sum, index) tuples
             HashMap<Integer, Integer> map = new HashMap<>();
             int sum = 0, maxLen = 0;
 
             // traverse the given array
             for (int i = 0; i < n; i++) {
                 
                  // accumulate sum
                  sum += arr[i];
                 
                  // when subarray starts from index '0'
                  if (sum == k)
                      maxLen = i + 1;
 
                  // make an entry for 'sum' if it is
                  // not present in 'map'
                  if (!map.containsKey(sum)) {
                      map.put(sum, i);
                  }
 
                  // check if 'sum-k' is present in 'map'
                  // or not
                  if (map.containsKey(sum - k)) {
                       
                      // update maxLength
                      if (maxLen < (i - map.get(sum - k)))
                          maxLen = i - map.get(sum - k);
                  }
             }
              
             return maxLen;            
      }
 
      // Driver code
      public static void main(String args[])
      {
             int[] arr = {10, 5, 2, 7, 1, 9};
             int n = arr.length;
             int k = 15;
             System.out.println("Length = " +
                                lenOfLongSubarr(arr, n, k));
      }
}
 
// This code is contributed by rachana soma


Python3




# Python3 implementation to find the length
# of longest subArray having sum k
 
# function to find the longest
# subarray having sum k
def lenOfLongSubarr(arr, n, k):
 
    # dictionary mydict implemented
    # as hash map
    mydict = dict()
 
    # Initialize sum and maxLen with 0
    sum = 0
    maxLen = 0
 
    # traverse the given array
    for i in range(n):
 
        # accumulate the sum
        sum += arr[i]
 
        # when subArray starts from index '0'
        if (sum == k):
            maxLen = i + 1
 
        # check if 'sum-k' is present in
        # mydict or not
        elif (sum - k) in mydict:
            maxLen = max(maxLen, i - mydict[sum - k])
 
        # if sum is not present in dictionary
        # push it in the dictionary with its index
        if sum not in mydict:
            mydict[sum] = i
 
    return maxLen
 
# Driver Code
if __name__ == '__main__':
    arr = [10, 5, 2, 7, 1, 9]
    n = len(arr)
    k = 15
    print("Length =", lenOfLongSubarr(arr, n, k))
 
# This code is contributed by
# chaudhary_19 (Mayank Chaudhary)


C#




// C# implementation to find the length
// of longest subarray having sum k
using System;
using System.Collections.Generic;
 
class GFG
{
 
// function to find the length of longest
// subarray having sum k
static int lenOfLongSubarr(int[] arr,
                           int n, int k)
{
    // HashMap to store (sum, index) tuples
    Dictionary<int,
               int> map = new Dictionary<int,
                                         int>();
    int sum = 0, maxLen = 0;
 
    // traverse the given array
    for (int i = 0; i < n; i++)
    {
         
        // accumulate sum
        sum += arr[i];
         
        // when subarray starts from index '0'
        if (sum == k)
            maxLen = i + 1;
 
        // make an entry for 'sum' if it is
        // not present in 'map'
        if (!map.ContainsKey(sum))
        {
            map.Add(sum, i);
        }
 
        // check if 'sum-k' is present in 'map'
        // or not
        if (map.ContainsKey(sum - k))
        {
                 
            // update maxLength
            if (maxLen < (i - map[sum - k]))
                maxLen = i - map[sum - k];
        }
    }
     
    return maxLen;        
}
 
// Driver code
public static void Main()
{
    int[] arr = {10, 5, 2, 7, 1, 9};
    int n = arr.Length;
    int k = 15;
    Console.WriteLine("Length = " +
                       lenOfLongSubarr(arr, n, k));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// JavaScript implementation to find the length
// of longest subarray having sum k
 
// function to find the length of longest
// subarray having sum k
function lenOfLongSubarr(arr, n, k)
{
 
    // unordered_map 'um' implemented
    // as hash table
    var um = new Map();
    var sum = 0, maxLen = 0;
 
    // traverse the given array
    for (var i = 0; i < n; i++) {
 
        // accumulate sum
        sum += arr[i];
 
        // when subarray starts from index '0'
        if (sum == k)
            maxLen = i + 1;
 
        // make an entry for 'sum' if it is
        // not present in 'um'
        if (!um.has(sum))
            um.set(sum, i);
 
        // check if 'sum-k' is present in 'um'
        // or not
        if (um.has(sum - k)) {
 
            // update maxLength
            if (maxLen < (i - um.get(sum - k)))
                maxLen = i - um.get(sum - k);
        }
    }
 
    // required maximum length
    return maxLen;
}
 
// Driver Code
var arr = [10, 5, 2, 7, 1, 9];
var n = arr.length;
var k = 15;
document.write( "Length = "
      + lenOfLongSubarr(arr, n, k));
 
</script>


Output

Length = 4

Time Complexity: O(N), where N is the length of the given array.
Auxiliary Space: O(N), for storing the maxLength in the HashMap.

Another Approach

This approach won’t work for negative numbers

In the variable-size sliding window, we do three things.

1. calculation, in this case doing the sum.

2. drawing results out of calculations. in this case, extracting the size of the window if the sum reaches K (target).

3. adjusting the window. in this case, increasing the size of the window if the sum is less than K(target) or decreasing the size if the sum is greater than K(target).

The approach is to use the concept of the variable-size sliding window using 2 pointers
Initialize i, j, and sum = 0. If the sum is less than k just increment j, if the sum is equal to k compute the max and if the sum is greater than k subtract the ith element while the sum is greater than k.

Implementation:

C++




// C++ implementation to find the length
// of longest subarray having sum k
#include <bits/stdc++.h>
using namespace std;
 
// function to find the length of longest
// subarray having sum k
int lenOfLongSubarr(int A[], int N, int K)
{
 
    int i = 0, j = 0, sum = 0;
    int maxLen = INT_MIN;
   
    while (j < N) {
        sum += A[j];  //calculation
        if (sum == K) {
          maxLen = max(maxLen, j-i+1);     //taking results
            j++;
        }
        else if (sum < K) {    //adjusting window
            j++;
        }
        else if (sum > K) {     //adjusting window
            while (sum > K) {
                sum -= A[i];
                 i++;
            }
              if(sum == K){
              maxLen = max(maxLen, j-i+1);
            }
            j++;
        }
    }
    return maxLen;
}
 
// Driver Code
int main()
{
    int arr[] = { 10, 5, 2, 7, 1, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 15;
    cout << "Length = " << lenOfLongSubarr(arr, n, k);
    return 0;
}


Java




/*package whatever //do not write package name here */
 
import java.io.*;
 
class GFG {
  // Java implementation to find the length
  // of longest subarray having sum k
 
 
  // function to find the length of longest
  // subarray having sum k
  static int lenOfLongSubarr(int A[], int N, int K)
  {
 
    int i = 0, j = 0, sum = 0;
    int maxLen = Integer.MIN_VALUE;
 
    while (j < N) {
      sum += A[j];
      if (sum < K) {
        j++;
      }
      else if (sum == K) {
        maxLen = Math.max(maxLen, j-i+1);
        j++;
      }
      else if (sum > K) {
        while (sum > K) {
          sum -= A[i];
          i++;
        }
        if(sum == K){
          maxLen = Math.max(maxLen, j-i+1);
        }
        j++;
      }
    }
    return maxLen;
  }
 
 
  // Driver code
  public static void main(String args[])
  {
    int arr[] = { 10, 5, 2, 7, 1, 9 };
    int n = arr.length;
    int k = 15;
    System.out.printf("Length = %d",lenOfLongSubarr(arr, n, k));
  }
}
 
// This code is contributed by shinjanpatra.


Python3




# Python implementation to find the length
# of longest subarray having sum k
 
# function to find the length of longest
# subarray having sum k
import sys
 
def lenOfLongSubarr(A, N, K):
 
    i, j, sum = 0, 0, 0
    maxLen = -sys.maxsize -1
   
    while (j < N):
        sum += A[j]
        if (sum < K):
            j += 1
        elif (sum == K):
            maxLen = max(maxLen, j - i + 1)
            j += 1
        elif (sum > K):
            while (sum > K):
                sum -= A[i]
                i += 1
            if (sum == K):
                  maxLen = max(maxLen, j - i + 1)
            j += 1
    return maxLen
 
# Driver Code
arr = [ 10, 5, 2, 7, 1, 9 ]
n = len(arr)
k = 15
print("Length = "+ str(lenOfLongSubarr(arr, n, k)))
 
# This code is contributed by shinjanpatra


C#




// C# code for the above approach
 
using System;
 
public class GFG {
 
    // function to find the length of longest subarray
    // having sum k
    static int lenOfLongSubarr(int[] A, int N, int K)
    {
 
        int i = 0, j = 0, sum = 0;
        int maxLen = Int32.MinValue;
 
        while (j < N) {
            sum += A[j];
            if (sum < K) {
                j++;
            }
            else if (sum == K) {
                maxLen = Math.Max(maxLen, j - i + 1);
                j++;
            }
            else if (sum > K) {
                while (sum > K) {
                    sum -= A[i];
                    i++;
                }
                if (sum == K) {
                    maxLen = Math.Max(maxLen, j - i + 1);
                }
                j++;
            }
        }
        return maxLen;
    }
 
    static public void Main()
    {
 
        // Code
        int[] arr = { 10, 5, 2, 7, 1, 9 };
        int n = arr.Length;
        int k = 15;
 
        Console.Write("Length = "
                      + lenOfLongSubarr(arr, n, k));
    }
}
 
// This code is contributed by lokesh (lokeshmvs21).


Javascript




<script>
 
// JavaScript implementation to find the length
// of longest subarray having sum k
 
// function to find the length of longest
// subarray having sum k
function lenOfLongSubarr(A, N, K)
{
 
    let i = 0, j = 0, sum = 0;
    let maxLen = Number.MIN_VALUE;
   
    while (j < N) {
        sum += A[j];
        if (sum < K) {
            j++;
        }
        else if (sum == K) {
            maxLen = Math.max(maxLen, j-i+1);
            j++;
        }
        else if (sum > K) {
            while (sum > K) {
                sum -= A[i];
                 i++;
            }
            if(sum == K){
                maxLen = Math.max(maxLen, j-i+1);
            }
            j++;
        }
    }
    return maxLen;
}
 
// Driver Code
 
let arr = [ 10, 5, 2, 7, 1, 9 ]
let n = arr.length
let k = 15
document.write("Length = ",lenOfLongSubarr(arr, n, k))
 
// This code is contributed by shinjanpatra
 
</script>


Output

Length = 4

Time Complexity: O(N), where N is the length of the given array.
Auxiliary Space: O(1), as constant extra space is required.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments