Saturday, January 11, 2025
Google search engine
HomeData Modelling & AILongest sequence such that no two adjacent element are of same type

Longest sequence such that no two adjacent element are of same type

Given an array arr[] of size N, where each value represents the number of elements present of the ith type, the task is to find the longest sequence that can be made such that no two adjacent elements are of the same type.

Examples:

Input: N = 3, arr[] = {7, 3, 2}
Output: 11
Explanation:
In the above example there are three types of elements which are type0, type1, and type2.
We have 7 elements of type0, 3 of type1, 2 of type2.
Maximum of 11 elements can be placed in a row such that no two adjacents are the same.
t0, t1, t0, t1, t0, t1, t0, t2, t0, t2, t0.

Input: N = 2, arr[] = {3, 6}
Output: 7
Explanation: t1, t0, t1, t0, t1, t0, t1. Here, we can see a maximum length of 7 is possible.

Approach: The problem can be solved based on the following idea:

We can use a two-pointer algorithm here on the sorted array. To get the maximum length, we need to get the maximum number of elements of a different type. For that just maintain two pointers one on starting and another on ending in a sorted array. Keep on adding elements of array arr[] in the sequence.

Follow the below steps to implement the idea:

  • First of all, sort the array.
  • Now use the two-pointer approach. One pointer will move from the start and one from the end.
  • As the sum of the first pointer elements decreases from the last pointer elements, add more elements to the first pointer that is move over the first pointer ahead and vice-versa.
  • Let’s say a minimum of both is min then our answer will be min * 2 + 1 and if both are the same then our answer will be min*2 because we will place each ball from both one by one. 

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum length of arrangement
int maxLength(int N, vector<int>& arr)
{
    // If only one type of elements are present
    if (N == 1)
        return 1;
 
    // Sorting the array
    sort(arr.begin(), arr.end());
 
    // presum and postsum
    int sum1 = arr[0], sum2 = arr[N - 1], ans;
 
    // This below if-else loop is for array
    // of size 2.
    if (sum1 == sum2) {
        ans = 2 * sum1;
    }
    else {
        int t = min(sum1, sum2);
        ans = t * 2 + 1;
    }
    // Setting the first pointer on second element
    // from start setting the second pointer on
    // second-last element.
    int i = 1, j = N - 2;
 
    while (i <= j) {
 
        // If presum become smaller of equal
        // then move first pointer else
        // move second pointer
        if (sum1 <= sum2) {
            sum1 += arr[i];
            i++;
        }
        else {
            sum2 += arr[j];
            j--;
        }
        // If both sum are equal then
        // answer will be total sum
        if (sum1 == sum2) {
            ans = 2 * sum1;
        }
        else {
            int t = min(sum1, sum2);
            ans = t * 2 + 1;
        }
    }
 
    // Return maximum length possible
    return ans;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 7, 3, 2 };
    int N = arr.size();
 
    // Function call
    cout << maxLength(N, arr) << endl;
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
import java.util.*;
 
public class Main {
 
    // Function to find maximum length of arrangement
    static int maxLength(int N, int[] arr)
    {
        // If only one type of elements are present
        if (N == 1)
            return 1;
 
        // Sorting the array
        Arrays.sort(arr);
 
        // presum and postsum
        int sum1 = arr[0], sum2 = arr[N - 1], ans;
 
        // This below if-else loop is for array
        // of size 2.
        if (sum1 == sum2) {
            ans = 2 * sum1;
        }
        else {
            int t = Math.min(sum1, sum2);
            ans = t * 2 + 1;
        }
        // Setting the first pointer on second element
        // from start setting the second pointer on
        // second-last element.
        int i = 1, j = N - 2;
 
        while (i <= j) {
 
            // If presum become smaller of equal
            // then move first pointer else
            // move second pointer
            if (sum1 <= sum2) {
                sum1 += arr[i];
                i++;
            }
            else {
                sum2 += arr[j];
                j--;
            }
            // If both sum are equal then
            // answer will be total sum
            if (sum1 == sum2) {
                ans = 2 * sum1;
            }
            else {
                int t = Math.min(sum1, sum2);
                ans = t * 2 + 1;
            }
        }
 
        // Return maximum length possible
        return ans;
    }
 
    public static void main(String[] args)
    {
        int[] arr = { 7, 3, 2 };
        int N = arr.length;
 
        System.out.println(maxLength(N, arr));
    }
}
 
// This code is contributed by lokesh.


Python3




# python code
def maxLength(N, arr):
    # If only one type of elements are present
    if N == 1:
        return 1
 
    # Sorting the array
    arr = sorted(arr)
 
    # presum and postsum
    sum1 = arr[0]
    sum2 = arr[N - 1]
    ans = 0
 
    # This below if-else loop is for array
    # of size 2.
    if sum1 == sum2:
        ans = 2 * sum1
    else:
        t = min(sum1, sum2)
        ans = t * 2 + 1
 
    # Setting the first pointer on second element
    # from start setting the second pointer on
    # second-last element.
    i = 1
    j = N - 2
 
    while i <= j:
        # If presum become smaller of equal
        # then move first pointer else
        # move second pointer
        if sum1 <= sum2:
            sum1 += arr[i]
            i += 1
        else:
            sum2 += arr[j]
            j -= 1
 
        # If both sum are equal then
        # answer will be total sum
        if sum1 == sum2:
            ans = 2 * sum1
        else:
            t = min(sum1, sum2)
            ans = t * 2 + 1
 
    # Return maximum length possible
    return ans
 
 
# Test code
arr = [7, 3, 2]
N = len(arr)
print(maxLength(N, arr))
 
# This code is contributed by ksam24000


C#




// C# code to implement the approach
 
using System;
 
class GFG {
 
    // Function to find maximum length of arrangement
    static int maxLength(int N, int[] arr)
    {
        // If only one type of elements are present
        if (N == 1)
            return 1;
 
        // Sorting the array
        Array.Sort(arr);
 
        // presum and postsum
        int sum1 = arr[0], sum2 = arr[N - 1], ans;
 
        // This below if-else loop is for array
        // of size 2.
        if (sum1 == sum2) {
            ans = 2 * sum1;
        }
        else {
            int t = Math.Min(sum1, sum2);
            ans = t * 2 + 1;
        }
        // Setting the first pointer on second element
        // from start setting the second pointer on
        // second-last element.
        int i = 1, j = N - 2;
 
        while (i <= j) {
 
            // If presum become smaller of equal
            // then move first pointer else
            // move second pointer
            if (sum1 <= sum2) {
                sum1 += arr[i];
                i++;
            }
            else {
                sum2 += arr[j];
                j--;
            }
            // If both sum are equal then
            // answer will be total sum
            if (sum1 == sum2) {
                ans = 2 * sum1;
            }
            else {
                int t = Math.Min(sum1, sum2);
                ans = t * 2 + 1;
            }
        }
 
        // Return maximum length possible
        return ans;
    }
 
    public static void Main()
    {
        int[] arr = { 7, 3, 2 };
        int N = arr.Length;
 
        Console.WriteLine(maxLength(N, arr));
    }
}
 
// This code is contributed by Pushpesh Raj.


Javascript




// Javascript code to implement the approach
 
// Function to find maximum length of arrangement
function maxLength(N, arr)
{
 
    // If only one type of elements are present
    if (N == 1)
        return 1;
 
    // Sorting the array
    arr.sort();
 
    // presum and postsum
    let sum1 = arr[0], sum2 = arr[N - 1], ans;
 
    // This below if-else loop is for array
    // of size 2.
    if (sum1 == sum2) {
        ans = 2 * sum1;
    }
    else {
        let t = Math.min(sum1, sum2);
        ans = t * 2 + 1;
    }
     
    // Setting the first pointer on second element
    // from start setting the second pointer on
    // second-last element.
    let i = 1, j = N - 2;
 
    while (i <= j) {
 
        // If presum become smaller of equal
        // then move first pointer else
        // move second pointer
        if (sum1 <= sum2) {
            sum1 += arr[i];
            i++;
        }
        else {
            sum2 += arr[j];
            j--;
        }
        // If both sum are equal then
        // answer will be total sum
        if (sum1 == sum2) {
            ans = 2 * sum1;
        }
        else {
            let t = Math.min(sum1, sum2);
            ans = t * 2 + 1;
        }
    }
 
    // Return maximum length possible
    return ans;
}
 
// Driver Code
    let arr =  [7, 3, 2];
    let N = arr.length;
 
    // Function call
    console.log(maxLength(N, arr));
  
 // This code is contributed by poojaagarwal2.


Output

11

Time Complexity: O(N * logN)
Auxiliary Space: O(1)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
10 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments