Given a string, find the longest substring which is a palindrome.
Examples:
Input: Given string :"forneveropenskeegfor",
Output: "neveropenskeeg".
Input: Given string :"Geeks",
Output: "ee".
BRUTE APPROACH: (TABULATION METHOD)
Intuition:
- We create a 2-D array to fill the array with appropriate steps.
- We fill the matrix using the gap method where we fill the matrix in a diagonal way .
- At every step ,we check if the substring generated has meet the condition of palindrome or not.
- At every step, we keep a counter variable to store the max length of the palindrome string achieved so far.
- Atlast we return the ans.
Implementation:
C++
// C++ program to find the longest palindromic substring in a given string. #include <iostream> using namespace std; string longestPalin(string s) { // Initialize variables to keep track of the // longest palindrome and its length. int count = -1; string ans = "" ; // Get the length of the input string. int n = s.length(); // Create a boolean 2D array to store palindrome information. bool dp[n][n]; // Iterate through different substring lengths. for ( int g = 0; g < n; g++) { for ( int i = 0, j = g; j < n; i++, j++) { // Check if the substring is of length 1 (base case). if (g == 0) { dp[i][j] = true ; } else if (g == 1) { // Check if the substring is of length 2 (base case). dp[i][j] = (s[i] == s[j]); } else { // Check if the current substring is a // palindrome based on its ends. dp[i][j] = (s[i] == s[j] && dp[i + 1][j - 1]); } // Update the longest palindrome and its length if found. if (dp[i][j] && count < j - i + 1) { ans = s.substr(i, j - i + 1); count = ans.length(); } } } return ans; } int main() { // Input string string str = "forneveropenskeegfor" ; // Print the longest palindromic substring. cout << longestPalin(str) << endl; return 0; } |
Java
// Java program to find the longest palindromic substring in a given string. class LongestPalindrome { static String longestPalin(String s) { // Initialize variables to keep track of the // longest palindrome and its length. int count = - 1 ; String ans = "" ; // Get the length of the input string. int n = s.length(); // Create a boolean 2D array to store palindrome information. boolean [][] dp = new boolean [n][n]; // Iterate through different substring lengths. for ( int g = 0 ; g < n; g++) { for ( int i = 0 , j = g; j < n; i++, j++) { // Check if the substring is of length 1 (base case). if (g == 0 ) { dp[i][j] = true ; } else if (g == 1 ) { // Check if the substring is of length 2 (base case). dp[i][j] = (s.charAt(i) == s.charAt(j)); } else { // Check if the current substring is a // palindrome based on its ends. dp[i][j] = (s.charAt(i) == s.charAt(j) && dp[i + 1 ][j - 1 ]); } // Update the longest palindrome and its length if found. if (dp[i][j] && count < s.substring(i, j + 1 ).length()) { ans = s.substring(i, j + 1 ); count = ans.length(); } } } return ans; } public static void main(String[] args) { // Input string String str = "forneveropenskeegfor" ; // Print the longest palindromic substring. System.out.println(longestPalin(str)); } } |
Python3
# Python program to find the longest palindromic substring in a given string. def longest_palin(s): # Initialize variables to keep track # of the longest palindrome and its length. count = - 1 ans = "" # Get the length of the input string. n = len (s) # Create a boolean 2D array to # store palindrome information. dp = [[ False ] * n for _ in range (n)] # Iterate through different substring lengths. for g in range (n): for i in range (n - g): j = i + g # Check if the substring is of length 1 (base case). if g = = 0 : dp[i][j] = True # Check if the substring is of length 2 (base case). elif g = = 1 : dp[i][j] = (s[i] = = s[j]) else : # Check if the current substring is a # palindrome based on its ends. dp[i][j] = (s[i] = = s[j] and dp[i + 1 ][j - 1 ]) # Update the longest palindrome and its length if found. if dp[i][j] and count < j - i + 1 : ans = s[i:j + 1 ] count = len (ans) return ans # Input string str = "forneveropenskeegfor" # Print the longest palindromic substring. print (longest_palin( str )) |
C#
// C# program to find the longest palindromic substring in a given string. using System; public class LongestPalindrome { public static string LongestPalin( string s) { // Initialize variables to keep track of the // longest palindrome and its length. int count = -1; string ans = "" ; // Get the length of the input string. int n = s.Length; // Create a boolean 2D array to store palindrome information. bool [,] dp = new bool [n, n]; // Iterate through different substring lengths. for ( int g = 0; g < n; g++) { for ( int i = 0, j = g; j < n; i++, j++) { // Check if the substring is of length 1 (base case). if (g == 0) { dp[i, j] = true ; } // Check if the substring is of length 2 (base case). else if (g == 1) { dp[i, j] = (s[i] == s[j]); } else { // Check if the current substring is a // palindrome based on its ends. dp[i, j] = (s[i] == s[j] && dp[i + 1, j - 1]); } // Update the longest palindrome and its length if found. if (dp[i, j] && count < j - i + 1) { ans = s.Substring(i, j - i + 1); count = ans.Length; } } } return ans; } public static void Main( string [] args) { // Input string string str = "forneveropenskeegfor" ; // Print the longest palindromic substring. Console.WriteLine(LongestPalin(str)); } } |
Javascript
// JavaScript program to find the longest palindromic substring in a given string. function longestPalin(s) { // Initialize variables to keep track of the // longest palindrome and its length. let count = -1; let ans = "" ; // Get the length of the input string. const n = s.length; // Create a boolean 2D array to store // palindrome information. const dp = Array.from({ length: n }, () => Array(n).fill( false )); // Iterate through different substring lengths. for (let g = 0; g < n; g++) { for (let i = 0, j = g; j < n; i++, j++) { // Check if the substring is of length 1 (base case). if (g === 0) { dp[i][j] = true ; } else if (g === 1) { // Check if the substring is of length 2 (base case). dp[i][j] = s[i] === s[j]; } else { // Check if the current substring is a // palindrome based on its ends. dp[i][j] = s[i] === s[j] && dp[i + 1][j - 1]; } // Update the longest palindrome and its length if found. if (dp[i][j] && count < j - i + 1) { ans = s.substring(i, j + 1); count = ans.length; } } } return ans; } // Input string const str = "forneveropenskeegfor" ; // Print the longest palindromic substring. console.log(longestPalin(str)); |
neveropenskeeg
Time Complexity: O(N^2), where N is the length of string
Space Complexity: O(N^2) since have created a 2-D array.
Common mistake: Wrong Approach:
Some people will be tempted to come up with a O(n) time complexity quick solution, which is unfortunately flawed (however can be corrected easily):
(i)Reverse S and store it in S’.
(ii)Find the longest common substring between S and S’ which must also be the longest palindromic substring.
This seemed to work, let’s see some examples below.
For example, S = “caba” then S’ = “abac”.
The longest common substring between S and S’ is “aba”, which is the answer.
Let’s try another example: S = “abacdfgdcaba” then S’ = “abacdgfdcaba”.
The longest common substring between S and S’ is “abacd”. Clearly, this is not a valid palindrome.
Correct Approach:
We could see that the longest common substring method fails when there exists a reversed copy of a non-palindromic substring in some other part of S. To rectify this, each time we find a longest common substring candidate, we check if the substring’s indices are the same as the reversed substring’s original indices. If it is, then we attempt to update the longest palindrome found so far; if not, we skip this and find the next candidate. This gives us an O(n^2) Dynamic Programming solution which uses O(n^2) space (which could be improved to use O(n) space).
Dynamic programming Approach: Dynamic programming solution is already discussed here in the previous post. The time complexity of the Dynamic Programming based solution is O(n^2) and it requires O(n^2) extra space. We can find the longest palindrome substring( LPS ) in (n^2) time with O(1) extra space.
The algorithm below is very simple and easy to understand. The idea is to Fix a center and expand in both directions for longer palindromes and keep track of the longest palindrome seen so far.
ALGO:
- Maintain a variable ‘ maxLength = 1 ‘ (for storing LPS length) and ‘ start =0 ‘ (for storing starting index of LPS ).
- The idea is very simple, we will traverse through the entire string with i=0 to i<(length of string).
- while traversing, initialize ‘low‘ and ‘high‘ pointer such that low= i-1 and high= i+1.
- keep incrementing ‘high’ until str[high]==str[i] .
- similarly keep decrementing ‘low’ until str[low]==str[i].
- finally we will keep incrementing ‘high’ and decrementing ‘low’ until str[low]==str[high].
- calculate length=high-low-1, if length > maxLength then maxLength = length and start = low+1 .
- Print the LPS and return maxLength.
C++
// A O(n^2) time and O(1) space program to // find the longest palindromic substring // easy to understand as compared to previous version. #include <bits/stdc++.h> using namespace std; // A utility function to print // a substring str[low..high] // This function prints the // longest palindrome substring (LPS) // of str[]. It also returns the // length of the longest palindrome int longestPalSubstr(string str) { int n = str.size(); // calculating size of string if (n < 2) return n; // if string is empty then size will be 0. // if n==1 then, answer will be 1(single // character will always palindrome) int maxLength = 1, start = 0; int low, high; for ( int i = 0; i < n; i++) { low = i - 1; high = i + 1; while (high < n && str[high] == str[i]) // increment 'high' high++; while (low >= 0 && str[low] == str[i]) // decrement 'low' low--; while (low >= 0 && high < n && str[low] == str[high]) { low--; high++; } int length = high - low - 1; if (maxLength < length) { maxLength = length; start = low + 1; } } cout << "Longest palindrome substring is: " ; cout << str.substr(start, maxLength); return maxLength; } // Driver program to test above functions int main() { string str = "forneveropenskeegfor" ; cout << "\nLength is: " << longestPalSubstr(str) << endl; return 0; } |
C
// A O(n^2) time and O(1) space // program to find the longest // palindromic substring #include <stdio.h> #include <string.h> // A utility function to print // a substring str[low..high] void printSubStr( char * str, int low, int high) { for ( int i = low; i <= high; ++i) printf ( "%c" , str[i]); } // This function prints the longest // palindrome substring (LPS) // of str[]. It also returns the // length of the longest palindrome int longestPalSubstr( char * str) { int n = strlen (str); // calculating size of string if (n < 2) return n; // if string is empty then size will be 0. // if n==1 then, answer will be 1(single // character will always palindrome) int maxLength = 1, start = 0; int low, high; for ( int i = 0; i < n; i++) { low = i - 1; high = i + 1; while (high < n && str[high] == str[i]) // increment 'high' high++; while (low >= 0 && str[low] == str[i]) // decrement 'low' low--; while (low >= 0 && high < n && str[low] == str[high]) { low--; // decrement low high++; // increment high } int length = high - low - 1; if (maxLength < length) { maxLength = length; start = low + 1; } } printf ( "Longest palindrome substring is: " ); printSubStr(str, start, start + maxLength - 1); return maxLength; } // Driver program to test above functions int main() { char str[] = "forneveropenskeegfor" ; printf ( "\nLength is: %d" , longestPalSubstr(str)); return 0; } |
Java
// Java implementation of O(n^2) // time and O(1) space method // to find the longest palindromic substring public class LongestPalinSubstring { // This function prints the // longest palindrome substring // (LPS) of str[]. It also // returns the length of the // longest palindrome static int longestPalSubstr(String str) { int n = str.length(); // calculating size of string if (n < 2 ) return n; // if string is empty then size will be 0. // if n==1 then, answer will be 1(single // character will always palindrome) int maxLength = 1 ,start= 0 ; int low, high; for ( int i = 0 ; i < n; i++) { low = i - 1 ; high = i + 1 ; while ( high < n && str.charAt(high) == str.charAt(i)) //increment 'high' high++; while ( low >= 0 && str.charAt(low) == str.charAt(i)) // decrement 'low' low--; while (low >= 0 && high < n && str.charAt(low) == str.charAt(high) ){ low--; high++; } int length = high - low - 1 ; if (maxLength < length){ maxLength = length; start=low+ 1 ; } } System.out.print( "Longest palindrome substring is: " ); System.out.println(str.substring(start, start + maxLength )); return maxLength; } // Driver program to test above function public static void main(String[] args) { String str = "forneveropenskeegfor" ; System.out.println( "Length is: " + longestPalSubstr(str)); } } |
Python3
# A O(n ^ 2) time and O(1) space program to find the # longest palindromic substring # This function prints the longest palindrome substring (LPS) # of str[]. It also returns the length of the longest palindrome def longestPalSubstr(string): n = len (string) # calculating size of string if (n < 2 ): return n # if string is empty then size will be 0. # if n==1 then, answer will be 1(single # character will always palindrome) start = 0 maxLength = 1 for i in range (n): low = i - 1 high = i + 1 while (high < n and string[high] = = string[i] ): high = high + 1 while (low > = 0 and string[low] = = string[i] ): low = low - 1 while (low > = 0 and high < n and string[low] = = string[high] ): low = low - 1 high = high + 1 length = high - low - 1 if (maxLength < length): maxLength = length start = low + 1 print ( "Longest palindrome substring is:" ,end = " " ) print (string[start:start + maxLength]) return maxLength # Driver program to test above functions string = ( "forneveropenskeegfor" ) print ( "Length is: " + str (longestPalSubstr(string))) |
C#
// C# implementation of O(n^2) time // and O(1) space method to find the // longest palindromic substring using System; class GFG { // This function prints the longest // palindrome substring (LPS) of str[]. // It also returns the length of the // longest palindrome public static int longestPalSubstr( string str) { int n = str.Length; // calculating size of string if (n < 2) return n; // if string is empty then size will be 0. // if n==1 then, answer will be 1(single // character will always palindrome) int maxLength = 1,start=0; int low, high; for ( int i = 0; i < n; i++) { low = i - 1; high = i + 1; while ( high < n && str[high] == str[i] ) //increment 'high' high++; while ( low >= 0 && str[low] == str[i]) // decrement 'low' low--; while (low >= 0 && high < n && str[low] == str[high] ){ low--; high++; } int length = high - low - 1; if (maxLength < length){ maxLength = length; start=low+1; } } Console.Write( "Longest palindrome substring is: " ); Console.WriteLine(str.Substring(start, maxLength)); return maxLength; } // Driver Code public static void Main( string [] args) { string str = "forneveropenskeegfor" ; Console.WriteLine( "Length is: " + longestPalSubstr(str)); } } |
Javascript
<script> // A O(n^2) time and O(1) space program to // find the longest palindromic substring // easy to understand as compared to previous version. // A utility function to print // a substring str[low..high] // This function prints the // longest palindrome substring (LPS) // of str[]. It also returns the // length of the longest palindrome function longestPalSubstr(str) { let n = str.length; // calculating size of string if (n < 2) return n; // if string is empty then size will be 0. // if n==1 then, answer will be 1(single // character will always palindrome) let maxLength = 1,start=0; let low, high; for (let i = 0; i < n; i++) { low = i - 1; high = i + 1; while ( high < n && str[high] == str[i]) //increment 'high' high++; while ( low >= 0 && str[low] == str[i]) // decrement 'low' low--; while (low >= 0 && high < n && str[low] == str[high]){ low--; high++; } let length = high - low - 1; if (maxLength < length) { maxLength = length; start=low+1; } } document.write( "Longest palindrome substring is: " ); document.write(str.substring(start,maxLength+start)); return maxLength; } // Driver program to test above functions let str = "forneveropenskeegfor" ; document.write( "</br>" , "Length is: " + longestPalSubstr(str), "</br>" ); </script> |
Longest palindrome substring is: neveropenskeeg Length is: 10
Complexity Analysis:
- Time complexity: O(n^2), where n is the length of the input string.
Outer Loop that traverses through the entire string, and Inner Loop that is used to expand from i . - Auxiliary Space: O(1).
No extra space is needed.
The Above approach is a cleaner way.
The function implementation to print the LPS and return the maxLength is given below:
C++
// A O(n^2) time and O(1) space program to // find the longest palindromic substring // easy to understand as compared to previous version. #include <bits/stdc++.h> using namespace std; int maxLength; // variables to store and string res; // update maxLength and res // A utility function to get the longest palindrome // starting and expanding out from given center indices void cSubUtil(string& s, int l, int r) { // check if the indices lie in the range of string // and also if it is palindrome while (l >= 0 && r < s.length() && s[l] == s[r]) { // expand the boundary l--; r++; } // if it's length is greater than maxLength update // maxLength and res if (r - l - 1 >= maxLength) { res = s.substr(l + 1, r - l - 1); maxLength = r - l - 1; } return ; } // A function which takes a string prints the LPS and // returns the length of LPS int longestPalSubstr(string str) { res = "" ; maxLength = 1; // for every index in the string check palindromes // starting from that index for ( int i = 0; i < str.length(); i++) { // check for odd length palindromes cSubUtil(str, i, i); // check for even length palindromes cSubUtil(str, i, i + 1); } cout << "Longest palindrome substring is: " ; cout << res << "\n" ; return maxLength; } // Driver program to test above functions int main() { string str = "forneveropenskeegfor" ; cout << "\nLength is: " << longestPalSubstr(str) << endl; return 0; } |
Java
// Java implementation of O(n^2) // time and O(1) space method // to find the longest palindromic substring public class LongestPalinSubstring { static int maxLength; // variables to store and static String res; // update maxLength and res // A utility function to get the longest palindrome // starting and expanding out from given center indices static void cSubUtil(String s, int l, int r) { // check if the indices lie in the range of string // and also if it is palindrome while (l >= 0 && r < s.length() && s.charAt(l) == s.charAt(r)) { // expand the boundary l--; r++; } // if it's length is greater than maxLength update // maxLength and res if (r - l - 1 >= maxLength) { res = s.substring(l + 1 , r); maxLength = r - l - 1 ; } return ; } // A function which takes a string prints the LPS and // returns the length of LPS static int longestPalSubstr(String str) { res = "" ; maxLength = 1 ; // for every index in the string check palindromes // starting from that index for ( int i = 0 ; i < str.length(); i++) { // check for odd length palindromes cSubUtil(str, i, i); // check for even length palindromes cSubUtil(str, i, i + 1 ); } System.out.print( "Longest palindrome substring is: " ); System.out.println(res); return maxLength; } // Driver program to test above function public static void main(String[] args) { String str = "forneveropenskeegfor" ; System.out.println( "Length is: " + longestPalSubstr(str)); } } |
Python3
# Python 3 implementation of O(n^2) # time and O(1) space method # to find the longest palindromic substring class LongestPalinSubstring : maxLength = 0 # variables to store and res = None # update maxLength and res # A utility function to get the longest palindrome # starting and expanding out from given center indices @staticmethod def cSubUtil( s, l, r) : # check if the indices lie in the range of string # and also if it is palindrome while (l > = 0 and r < len (s) and s[l] = = s[r]) : # expand the boundary l - = 1 r + = 1 # if it's length is greater than maxLength update # maxLength and res if (r - l - 1 > = LongestPalinSubstring.maxLength) : LongestPalinSubstring.res = s[l + 1 :r] LongestPalinSubstring.maxLength = r - l - 1 return # A function which takes a string prints the LPS and # returns the length of LPS @staticmethod def longestPalSubstr( str ) : LongestPalinSubstring.res = "" LongestPalinSubstring.maxLength = 1 # for every index in the string check palindromes # starting from that index i = 0 while (i < len ( str )) : # check for odd length palindromes LongestPalinSubstring.cSubUtil( str , i, i) # check for even length palindromes LongestPalinSubstring.cSubUtil( str , i, i + 1 ) i + = 1 print ( "Longest palindrome substring is: " , end = "") print (LongestPalinSubstring.res) return LongestPalinSubstring.maxLength # Driver program to test above function @staticmethod def main( args) : str1 = "forneveropenskeegfor" print ( "Length is: " + str (LongestPalinSubstring.longestPalSubstr(str1))) if __name__ = = "__main__" : LongestPalinSubstring.main([]) # This code is contributed by phasing17. |
C#
// C# implementation of O(n^2) time // and O(1) space method to find the // longest palindromic substring using System; class GFG { static int maxLength; // variables to store and static string res; // update maxLength and res // A utility function to get the longest palindrome // starting and expanding out from given center indices public static void cSubUtil( string s, int l, int r) { // check if the indices lie in the range of string // and also if it is palindrome while (l >= 0 && r < s.Length && s[l] == s[r]) { // expand the boundary l--; r++; } // if it's length is greater than maxLength update // maxLength and res if (r - l - 1 >= maxLength) { res = s.Substring(l + 1, r - l - 1); maxLength = r - l - 1; } return ; } // A function which takes a string prints the LPS and // returns the length of LPS public static int longestPalSubstr( string str) { res = "" ; maxLength = 1; // for every index in the string check palindromes // starting from that index for ( int i = 0; i < str.Length; i++) { // check for odd length palindromes cSubUtil(str, i, i); // check for even length palindromes cSubUtil(str, i, i + 1); } Console.Write( "Longest palindrome substring is: " ); Console.WriteLine(res); return maxLength; } // Driver Code public static void Main( string [] args) { string str = "forneveropenskeegfor" ; Console.WriteLine( "Length is: " + longestPalSubstr(str)); } } |
Javascript
// A O(n^2) time and O(1) space program to // find the longest palindromic substring // easy to understand as compared to previous version. let maxLength = 0; // variables to store and let res = "" ; // update maxLength and res // A utility function to get the longest palindrome // starting and expanding out from given center indices function cSubUtil(s, l, r) { // check if the indices lie in the range of string // and also if it is palindrome while (l >= 0 && r < s.length && s[l] === s[r]) { // expand the boundary l--; r++; } // if it's length is greater than maxLength update // maxLength and res if (r - l - 1 >= maxLength) { res = s.substring(l + 1, r); maxLength = r - l - 1; } return ; } // A function which takes a string prints the LPS and // returns the length of LPS function longestPalSubstr(str) { res = "" ; maxLength = 1; // for every index in the string check palindromes // starting from that index for (let i = 0; i < str.length; i++) { // check for odd length palindromes cSubUtil(str, i, i); // check for even length palindromes cSubUtil(str, i, i + 1); } console.log( "Longest palindrome substring is: " + res); return maxLength; } // Driver program to test above functions let str = "forneveropenskeegfor" ; console.log( "\nLength is: " + longestPalSubstr(str)); // This code is contributed by akashish__ |
Longest palindrome substring is: neveropenskeeg Length is: 10
Please write comments if you find anything incorrect, or have more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!