Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AILongest palindromic String formed using concatenation of given strings in any order

Longest palindromic String formed using concatenation of given strings in any order

Given an array of strings arr[] of the same length, the task is to find the longest palindromic string that can be made using the concatenation of strings in any order. 

Examples:

Input: arr[] = {“aba”, “aba”} 
Output: abaaba

Input: arr[] = {“abc”, “dba”, “kop”, “cba”, “abd”} 
Output: abcdbaabdcba 
 

Approach:  

  • Find all the pairs of strings which are reverse of each other and store them in two different arrays pair1[] and pair2 separately and delete those pairs from the original array.
  • Find any palindromic string s1 in the array.
  • Join all the strings together of the array pair1[] into s2
  • Join all the strings together of the array pair2[] in reverse order into s3
  • Concatenate the strings s2 + s1 + s3 together to get longest palindromic string.

Below is the implementation of the above approach.

C++




// C++ implementation to find the longest
// palindromic String formed using
// concatenation of given strings in any order
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the longest palindromic
// from given array of strings
void longestPalindrome(string a[],
                       int n)
{
    string pair1[n];
    string pair2[n];
    int r = 0;
 
    // Loop to find the pair of strings
    // which are reverse of each other
    for (int i = 0; i < n; i++) {
        string s = a[i];
        reverse(s.begin(), s.end());
        for (int j = i + 1; j < n; j++) {
            if (a[i] != "" && a[j] != "") {
                if (s == a[j]) {
                    pair1[r] = a[i];
                    pair2[r++] = a[j];
                    a[i] = "";
                    a[j] = "";
                    break;
                }
            }
        }
    }
    string s1 = "";
 
    // Loop to find if any palindromic
    // string is still left in the array
    for (int i = 0; i < n; i++) {
        string s = a[i];
        reverse(a[i].begin(), a[i].end());
        if (a[i] != "") {
            if (a[i] == s) {
                s1 = a[i];
                break;
            }
        }
    }
    string ans = "";
 
    // Update the answer with
    // all strings of pair1
    for (int i = 0; i < r; i++) {
        ans = ans + pair1[i];
    }
    // Update the answer with
    // palindromic string s1
    if (s1 != "") {
        ans = ans + s1;
    }
    // Update the answer with
    // all strings of pair2
    for (int j = r - 1; j >= 0; j--) {
        ans = ans + pair2[j];
    }
    cout << ans << endl;
}
 
// Driver Code
int main()
{
    string a1[2] = { "aba", "aba" };
    int n1 = sizeof(a1) / sizeof(a1[0]);
    longestPalindrome(a1, n1);
 
    string a2[5] = { "abc", "dba", "kop",
                     "abd", "cba" };
    int n2 = sizeof(a2) / sizeof(a2[0]);
    longestPalindrome(a2, n2);
}


Java




// Java implementation to find the longest
// palindromic String formed using
// concatenation of given Strings in any order
class GFG
{
 
// Function to find the longest palindromic
// from given array of Strings
static void longestPalindrome(String a[],
                            int n)
{
    String []pair1 = new String[n];
    String []pair2 = new String[n];
    int r = 0;
 
    // Loop to find the pair of Strings
    // which are reverse of each other
    for (int i = 0; i < n; i++)
    {
        String s = a[i];
        s = reverse(s);
        for (int j = i + 1; j < n; j++)
        {
            if (a[i] != "" && a[j] != "")
            {
                if (s.equals(a[j]))
                {
                    pair1[r] = a[i];
                    pair2[r++] = a[j];
                    a[i] = "";
                    a[j] = "";
                    break;
                }
            }
        }
    }
    String s1 = "";
 
    // Loop to find if any palindromic
    // String is still left in the array
    for (int i = 0; i < n; i++)
    {
        String s = a[i];
        a[i] = reverse(a[i]);
        if (a[i] != "")
        {
            if (a[i].equals(s))
            {
                s1 = a[i];
                break;
            }
        }
    }
    String ans = "";
 
    // Update the answer with
    // all Strings of pair1
    for (int i = 0; i < r; i++)
    {
        ans = ans + pair1[i];
    }
     
    // Update the answer with
    // palindromic String s1
    if (s1 != "")
    {
        ans = ans + s1;
    }
    // Update the answer with
    // all Strings of pair2
    for (int j = r - 1; j >= 0; j--)
    {
        ans = ans + pair2[j];
    }
    System.out.print(ans +"\n");
}
static String reverse(String input)
{
    char[] a = input.toCharArray();
    int l, r = a.length - 1;
    for (l = 0; l < r; l++, r--)
    {
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.valueOf(a);
}
 
// Driver Code
public static void main(String[] args)
{
    String []a1 = { "aba", "aba" };
    int n1 = a1.length;
    longestPalindrome(a1, n1);
 
    String []a2 = { "abc", "dba", "kop",
                    "abd", "cba" };
    int n2 = a2.length;
    longestPalindrome(a2, n2);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation to find the longest
# palindromic String formed using
# concatenation of given strings in any order
 
# Function to find the longest palindromic
# from given array of strings
def longestPalindrome(a, n):
    pair1 = [0]*n
    pair2 = [0]*n
    r = 0
 
    # Loop to find the pair of strings
    # which are reverse of each other
    for i in range(n):
        s = a[i]
        s = s[::-1]
        for j in range(i + 1, n):
            if (a[i] != "" and a[j] != ""):
                if (s == a[j]):
                    pair1[r] = a[i]
                    pair2[r] = a[j]
                    r += 1
                    a[i] = ""
                    a[j] = ""
                    break
 
    s1 = ""
 
    # Loop to find if any palindromic
    # is still left in the array
    for i in range(n):
        s = a[i]
        a[i] = a[i][::-1]
        if (a[i] != ""):
            if (a[i] == s):
                s1 = a[i]
                break
 
    ans = ""
 
    # Update the answer with
    # all strings of pair1
    for i in range(r):
        ans = ans + pair1[i]
     
    # Update the answer with
    # palindromic s1
    if (s1 != ""):
        ans = ans + s1
     
    # Update the answer with
    # all strings of pair2
    for j in range(r - 1, -1, -1):
        ans = ans + pair2[j]
    print(ans)
 
# Driver Code
a1 = ["aba", "aba"]
n1 = len(a1)
longestPalindrome(a1, n1)
 
a2 = ["abc", "dba", "kop","abd", "cba"]
n2 = len(a2)
longestPalindrome(a2, n2)
 
# This code is contributed by mohit kumar 29


C#




// C# implementation to find the longest
// palindromic String formed using
// concatenation of given Strings in any order
using System;
 
class GFG
{
  
// Function to find the longest palindromic
// from given array of Strings
static void longestPalindrome(String []a,
                            int n)
{
    String []pair1 = new String[n];
    String []pair2 = new String[n];
    int r = 0;
  
    // Loop to find the pair of Strings
    // which are reverse of each other
    for (int i = 0; i < n; i++)
    {
        String s = a[i];
        s = reverse(s);
        for (int j = i + 1; j < n; j++)
        {
            if (a[i] != "" && a[j] != "")
            {
                if (s.Equals(a[j]))
                {
                    pair1[r] = a[i];
                    pair2[r++] = a[j];
                    a[i] = "";
                    a[j] = "";
                    break;
                }
            }
        }
    }
    String s1 = "";
  
    // Loop to find if any palindromic
    // String is still left in the array
    for (int i = 0; i < n; i++)
    {
        String s = a[i];
        a[i] = reverse(a[i]);
        if (a[i] != "")
        {
            if (a[i].Equals(s))
            {
                s1 = a[i];
                break;
            }
        }
    }
    String ans = "";
  
    // Update the answer with
    // all Strings of pair1
    for (int i = 0; i < r; i++)
    {
        ans = ans + pair1[i];
    }
      
    // Update the answer with
    // palindromic String s1
    if (s1 != "")
    {
        ans = ans + s1;
    }
    // Update the answer with
    // all Strings of pair2
    for (int j = r - 1; j >= 0; j--)
    {
        ans = ans + pair2[j];
    }
    Console.Write(ans +"\n");
}
static String reverse(String input)
{
    char[] a = input.ToCharArray();
    int l, r = a.Length - 1;
    for (l = 0; l < r; l++, r--)
    {
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.Join("",a);
}
  
// Driver Code
public static void Main(String[] args)
{
    String []a1 = { "aba", "aba" };
    int n1 = a1.Length;
    longestPalindrome(a1, n1);
  
    String []a2 = { "abc", "dba", "kop",
                    "abd", "cba" };
    int n2 = a2.Length;
    longestPalindrome(a2, n2);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation to find the longest
// palindromic String formed using
// concatenation of given strings in any order
 
// Function to find the longest palindromic
// from given array of strings
function longestPalindrome(a, n)
{
    var pair1 = Array(n);
    var pair2 = Array(n);
    var r = 0;
 
    // Loop to find the pair of strings
    // which are reverse of each other
    for(var i = 0; i < n; i++)
    {
        var s = a[i];
        s = s.split('').reverse().join('');
     
        for(var j = i + 1; j < n; j++)
        {
            if (a[i] != "" && a[j] != "")
            {
                if (s == a[j])
                {
                    pair1[r] = a[i];
                    pair2[r++] = a[j];
                    a[i] = "";
                    a[j] = "";
                    break;
                }
            }
        }
    }
    var s1 = "";
 
    // Loop to find if any palindromic
    // string is still left in the array
    for(var i = 0; i < n; i++)
    {
        var s = a[i];
        a[i] = a[i].split('').reverse().join('');
     
        if (a[i] != "")
        {
            if (a[i] == s)
            {
                s1 = a[i];
                break;
            }
        }
    }
    var ans = "";
 
    // Update the answer with
    // all strings of pair1
    for(var i = 0; i < r; i++)
    {
        ans = ans + pair1[i];
    }
     
    // Update the answer with
    // palindromic string s1
    if (s1 != "")
    {
        ans = ans + s1;
    }
     
    // Update the answer with
    // all strings of pair2
    for(var j = r - 1; j >= 0; j--)
    {
        ans = ans + pair2[j];
    }
    document.write(ans + "<br>");
}
 
// Driver Code
var a1 = [ "aba", "aba" ];
var n1 = a1.length;
longestPalindrome(a1, n1);
 
var a2 = [ "abc", "dba", "kop",
           "abd", "cba" ];
var n2 = a2.length;
longestPalindrome(a2, n2);
 
// This code is contributed by rrrtnx
 
</script>


Output

abaaba
abcdbaabdcba

Time Complexity: O(N2)

Auxiliary Space: O(N)

Method 2

Approach: One point to note down is that basically there are two types of strings. First, the strings which are palindrome let us say pallString and second, the strings that are not palindrome let us say notPallString. We will store pallString in a hashmap pallMap and notPallString in hashmap notPallMap. Now assume we have an array ans[] which stores the final palindromic string inside it. We also have two pointers i and j such that i points to starting index of ans and j points to the last index of ans.

Now we will travel our given array, arr. If we get pallString then we will increase its frequency in pallMap. If we get notPallString then it is an interesting case. We will check if it’s reverse, reverse_notPallString exists in notPallMap or not. If reverse_notPallString exists in the notPallMap in that case notPallString and reverse_notpallString can be part of our ans array. So we will add notPallString at index i and reverse_notPallString at index j . We will also decrease the frequency of reverse_notPallString from our notPallMap.  After this, we will increase i and decrease j. If reverse_notpallString does not exist in notPallMap, then we will increase the frequency of notPallString in notPallMap. Similarly, we will travel the whole array. After traveling the whole arr, pallMap will store the strings and their frequency which are palindromes on their own. So we will iterate over the pallMap. Assume we have the string pall_string  and its frequency as freq as we are iterating the pallMap. Now while the freq > 1, we will add pall_string at index i and index j respectively, and will decrease the freq by 2. We will also increase i pointer and decrease j pointer. We will also maintain whether we got any odd freq or not because such pall_string does not require any other string to be part of ans array. So such pall can be at the center of our ans array .

After the above steps, our ans array will store the palindromic arrangements of arr.

Algorithm:

1) Maintain an array ans which will sore the palindromic strings. Pointer i will point to the starting of ans and j will point to the ending of ans

1) Iterate the array arr

2) If you got a pallString, then increase its frequency in the pallMap

3) If you got a notPallString, than

   3.1) Check if its reverse reverse_notPallString exists in the notPallMap or not

  3.2) If the reverse_notPallString exists in notPallMap then add noPallString at index i and                   reverse_notPallString at index j. Also decrease the frequency of reverse_notPallString                 from notPallMap. Increase i pointer and decrease j pointer after the addition of the                  strings in ans .

   3.3) If the reverse_notPallString does not exist in notPallMap then increase the frequency of             notPallString in notPallMap

4) After traveling the arr, travel the pallMap as it will have palindromic strings pall_string with its frequency as freq

5) Now, while the freq > 1, add pall_string at index i and j. Also, decrease the freq by 2.

6) Note if any freq is odd or not because such pall_string, let us say centre_string can be at the center of our array arr as it is a palindrome and does not require any reverse to contribute to the ans .

7) Travel ans and, and store the valid strings in your result (skipping null values)

Below is the implementation of the above approach.

C++




#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
 
using namespace std;
 
void solve(string arr[], int n);
 
int main()
{
    string a1[] = { "aba", "aba" };
    int n1 = sizeof(a1) / sizeof(a1[0]);
    solve(a1, n1);
 
    string a2[] = { "abc", "dba", "kop", "abd", "cba" };
    int n2 = sizeof(a2) / sizeof(a2[0]);
    solve(a2, n2);
    //        abaaba
    //        abdcbaabcdba
 
    return 0;
}
 
void solve(string arr[], int n)
{
 
    //   array ans[] will store the final palindromic
    //   strings
    vector<string> ans(n);
    //        pointer i at starting and j at ending index of
    //ans
    int i = 0, j = n - 1;
    //        pallMap wil store the  palindromic strings
    unordered_map<string, int> pallMap;
    //        notPallMap will store the not palindromic
    //strings
    unordered_map<string, int> notPallMap;
    for (int k = 0; k < n; k++) {
        //            String str1 will store the
        //string of arr
        string str1 = arr[k];
        //            freq is the frequency of
        //pall_String
        string str2 = string(str1.rbegin(), str1.rend());
        if (str1 == str2) {
            //                if the str1 is a palindromic
            //string                 than increase its frequency in pallMap
            pallMap[str1]++;
        }
        else {
            //                check if reverse string str2 exist in
            //notPallMap or not
            int freq = notPallMap[str2];
            //                if str2 not exist than increase it's
            //frequency in notPallMap
            if (freq == 0) {
                notPallMap[str1]++;
            }
            else {
                //                    if str2
                //exist in the notPallMap than                     add str1 at
                //index i and str2 at index j
                ans[i] = str1;
                ans[j] = str2;
                //                    increase i
                //and decrease j after adding in ans
                i++;
                j--;
                //                    decrease the
                //frequency of str2 in notPallMap
                notPallMap[str2]--;
            }
        }
    }
    //        Stirng odd will store the palindromic string with
    //odd frequency
    string odd;
    //        travel the hashMap, pallMap
    for (auto& kk : pallMap) {
        //            pall_String is the palindromic
        //string
        string pall_string = kk.first;
        //            freq is the frequency of
        //pall_String
        int freq = kk.second;
 
        if (freq % 2 == 1) {
            while (freq > 1) {
                ans[i++] = pall_string;
                ans[j--] = pall_string;
                freq -= 2;
            }
            //                if the freq is odd, than store it in
            //String odd
            if (odd.empty()) {
                odd = pall_string;
            }
        }
        else {
            while (freq > 0) {
                ans[i++] = pall_string;
                ans[j--] = pall_string;
                freq -= 2;
            }
        }
    }
    //        Store the String odd in ans if it is not
    //null
    if (!odd.empty()) {
        ans[i++] = odd;
    }
    //        String res will hold the final palindromic
    //string
    string res;
    for (auto& temp : ans) {
        //            if String is not null than add
        //it in ans
        if (!temp.empty()) {
            res += temp;
        }
    }
    cout << res << endl;
}
 
string reverse(string input)
{
    int l, r = input.size() - 1;
    for (l = 0; l < r; l++, r--) {
        char temp = input[l];
        input[l] = input[r];
        input[r] = temp;
    }
    return input;
}


Java




import java.util.*;
import java.io.*;
 
public class GFG {
     
     
    public static void main(String[] args)
    {
        String []a1 = { "aba", "aba" };
        int n1 = a1.length;
        solve(a1, n1);
 
        String []a2 = { "abc", "dba", "kop",
                        "abd", "cba" };
        int n2 = a2.length;
        solve(a2, n2);
//        abaaba
//        abdcbaabcdba
    }
     
    static void solve( String[] arr , int n )
    {
//        array ans[] will store the final palindromic strings
        String ans[] = new String[n] ;
//        pointer i at starting and j at ending index of ans
        int i = 0 , j = n-1 ;
//        pallMap wil store the  palindromic strings
        HashMap< String , Integer > pallMap  = new HashMap<>() ;
//        notPallMap will store the not palindromic strings
        HashMap< String , Integer > notPallMap  = new HashMap<>() ;
        for( int k = 0 ; k < n ; k++)
        {
//            String str1 will store the string of arr
            String str1 = arr[k] ;
//            String str2 will store the reverse of string str1
            String str2 = reverse(str1) ;
            if(str1.equals(str2))
            {
//                if the str1 is a palindromic string
//                than increase its frequency in pallMap
                pallMap.put( str1, pallMap.getOrDefault( pallMap , 0 ) + 1) ;
            }else
            {
//                check if reverse string str2 exist in notPallMap or not
                int freq = notPallMap.getOrDefault( str2 ,0) ;
//                if str2 not exist than increase it's frequency in notPallMap
                if( freq == 0)
                {
                    notPallMap.put( str1, notPallMap.getOrDefault( str1 ,0 ) +1) ;
                }else
                {
//                    if str2 exist in the notPallMap than
//                    add str1 at index i and str2 at index j
                    ans[i] = str1 ;
                    ans[j] = str2 ;
//                    increase i and decrease j after adding in ans
                    i++;j--;
//                    decrease the frequency of str2 in notPallMap
                    notPallMap.put( str2 , freq -1 ) ;
                }
            }
        }
//        Stirng odd will store the palindromic string with odd frequency
        String odd = null ;
//        travel the hashMap, pallMap
        for( Map.Entry<String , Integer> kk : pallMap.entrySet())
        {
//            pall_String is the palindromic string
            String pall_string = kk.getKey() ;
//            freq is the frequency of pall_String
            int freq = kk.getValue();
 
            if ( freq %2 == 1 )
            {
                while( freq > 1 )
                {
                    ans[i++] = pall_string ;
                    ans[j--]  = pall_string ;
                    freq-=2;
                }
//                if the freq is odd, than store it in String odd
                if( odd == null )
                {
                    odd = pall_string ;
                }
            }else
            {
                while( freq > 0 )
                {
                    ans[i++] = pall_string ;
                    ans[j--] = pall_string  ;
                    freq-=2;
                }
            }
        }
//        Store the String odd in ans if it is not null
        if( odd != null ) ans[i++] = odd ;
//        String res will hold the final palindromic string
        String res = "" ;
        for( String temp :ans )
        {
//            if String is not null than add it in ans
            if( temp != null)
            {
                res += temp ;
            }
        }
        System.out.println(res);
         
    }
     
    static String reverse(String input)
    {
        char[] a = input.toCharArray();
        int l, r = a.length - 1;
        for (l = 0; l < r; l++, r--)
        {
            char temp = a[l];
            a[l] = a[r];
            a[r] = temp;
        }
        return String.valueOf(a);
    }
 
 
}


Python




from collections import defaultdict
 
 
def solve(arr, n):
  #        array ans[] will store the final palindromic strings
    ans = [None] * n
   #    pointer i at starting and j at ending index of ans
    i, j = 0, n - 1
    #   pallMap wil store the  palindromic strings
    pallMap = defaultdict(int)
    # notPallMap will store the not palindromic strings
    notPallMap = defaultdict(int)
 
    for k in range(n):
      # String str1 will store the string of arr
        str1 = arr[k]
        # String str2 will store the reverse of string str1
        str2 = str1[::-1]
 
        if str1 == str2:
          # if the str1 is a palindromic string
                #    than increase its frequency in pallMap
            pallMap[str1] += 1
        else:
          # check if reverse string str2 exist in notPallMap or not
            freq = notPallMap.get(str2, 0)
            # if str2 not exist than increase it's frequency in notPallMap
 
            if freq == 0:
                notPallMap[str1] += 1
            else:
              # if str2 exist in the notPallMap than
                        # add str1 at index i and str2 at index j
                ans[i] = str1
                ans[j] = str2
                # increase i and decrease j after adding in ans
                i += 1
                j -= 1
                # decrease the frequency of str2 in notPallMap
                notPallMap[str2] -= 1
 
# Stirng odd will store the palindromic string with odd frequency
    odd = None
 
  # travel the hashMap, pallMap
 
    for pall_string, freq in pallMap.items():
      # pall_String is the palindromic string
      # freq is the frequency of pall_String
        if freq % 2 == 1:
            while freq > 1:
                ans[i] = pall_string
                ans[j] = pall_string
                i += 1
                j -= 1
                freq -= 2
# if the freq is odd, than store it in String odd
            if odd is None:
                odd = pall_string
        else:
            while freq > 0:
                ans[i] = pall_string
                ans[j] = pall_string
                i += 1
                j -= 1
                freq -= 2
# Store the String odd in ans if it is not null
    if odd is not None:
        ans[i] = odd
# String res will hold the final palindromic string
    res = ''.join(x for x in ans if x is not None)
    print(res)
 
 
if __name__ == '__main__':
    a1 = ["aba", "aba"]
    n1 = len(a1)
    solve(a1, n1)
 
    a2 = ["abc", "dba", "kop", "abd", "cba"]
    n2 = len(a2)
    solve(a2, n2)


C#




using System;
using System.Collections.Generic;
 
namespace GFG
{
    class Program
    {
        static void Main(string[] args)
        {
            // Input arrays
            string[] a1 = { "aba", "aba" };
            int n1 = a1.Length;
            Solve(a1, n1);
 
            string[] a2 = { "abc", "dba", "kop", "abd", "cba" };
            int n2 = a2.Length;
            Solve(a2, n2);
        }
 
        static void Solve(string[] arr, int n)
        {
            // Array to store final palindromic strings
            string[] ans = new string[n];
            int i = 0, j = n - 1;
 
            // Dictionary to store palindromic strings and their frequencies
            Dictionary<string, int> pallMap = new Dictionary<string, int>();
 
            // Dictionary to store non-palindromic strings and their frequencies
            Dictionary<string, int> notPallMap = new Dictionary<string, int>();
 
            for (int k = 0; k < n; k++)
            {
                string str1 = arr[k];
                string str2 = Reverse(str1);
 
                if (str1.Equals(str2))
                {
                    // Increase the frequency of palindromic string in pallMap
                    pallMap[str1] = pallMap.GetValueOrDefault(str1) + 1;
                }
                else
                {
                    int freq = notPallMap.GetValueOrDefault(str2);
 
                    if (freq == 0)
                    {
                        // Increase the frequency of non-palindromic string in notPallMap
                        notPallMap[str1] = notPallMap.GetValueOrDefault(str1) + 1;
                    }
                    else
                    {
                        // Store strings in ans and adjust indices
                        ans[i] = str1;
                        ans[j] = str2;
                        i++;
                        j--;
                        // Decrease the frequency of str2 in notPallMap
                        notPallMap[str2] = freq - 1;
                    }
                }
            }
 
            string odd = null;
 
            foreach (KeyValuePair<string, int> kvp in pallMap)
            {
                string pallString = kvp.Key;
                int freq = kvp.Value;
 
                if (freq % 2 == 1)
                {
                    while (freq > 1)
                    {
                        ans[i++] = pallString;
                        ans[j--] = pallString;
                        freq -= 2;
                    }
 
                    if (odd == null)
                    {
                        // Store the odd frequency palindromic string
                        odd = pallString;
                    }
                }
                else
                {
                    while (freq > 0)
                    {
                        ans[i++] = pallString;
                        ans[j--] = pallString;
                        freq -= 2;
                    }
                }
            }
 
            if (odd != null)
            {
                // Store the odd frequency palindromic string in ans
                ans[i++] = odd;
            }
 
            // Concatenate the strings in ans to form the result
            string res = string.Join("", ans);
            Console.WriteLine(res);
        }
 
        static string Reverse(string input)
        {
            // Reverse the characters in the string
            char[] a = input.ToCharArray();
            int l, r = a.Length - 1;
            for (l = 0; l < r; l++, r--)
            {
                char temp = a[l];
                a[l] = a[r];
                a[r] = temp;
            }
            return new string(a);
        }
    }
}
// This code is contributed by Dwaipayan Bandyopadhyay


Javascript




// This function takes an array of strings arr and the length of the array n as input
function solve(arr, n) {
// Initialize an array of length n with null values
let ans = new Array(n).fill(null);
 
// Initialize i and j variables
let i = 0, j = n - 1;
 
// Initialize two maps for storing palindromic and non-palindromic strings
let pallMap = new Map();
let notPallMap = new Map();
 
// Initialize an odd variable to null
let odd = null;
 
// Loop through the input array arr
for (let k = 0; k < n; k++) {
// Get the string at index k
let str1 = arr[k];
// Reverse the string
let str2 = str1.split('').reverse().join('');
// If the string is palindromic, store it in the `pallMap`
if (str1 === str2) {
  if (pallMap.has(str1)) {
    pallMap.set(str1, pallMap.get(str1) + 1);
  } else {
    pallMap.set(str1, 1);
  }
} else { // If the string is not palindromic, store it in the `notPallMap`
  if (notPallMap.has(str2)) {
    let freq = notPallMap.get(str2);
    if (freq > 0) {
      ans[i] = str1;
      ans[j] = str2;
      i++;
      j--;
      notPallMap.set(str2, freq - 1);
    } else {
      notPallMap.set(str1, notPallMap.get(str1) + 1);
    }
  } else {
    notPallMap.set(str1, 1);
  }
}
}
 
// Loop through the palindromic strings stored in the pallMap
for (let [pall_string, freq] of pallMap.entries()) {
// If the frequency of the palindromic string is odd, store it in the odd variable and add the string to the ans array
if (freq % 2 === 1) {
while (freq > 1) {
ans[i] = pall_string;
ans[j] = pall_string;
i++;
j--;
freq -= 2;
}
if (odd === null) {
odd = pall_string;
}
} else { // If the frequency of the palindromic string is even, add the string to the ans array
while (freq > 0) {
ans[i] = pall_string;
ans[j] = pall_string;
i++;
j--;
freq -= 2;
}
}
}
 
// If there is a palindromic string with an odd frequency, add it to the middle of the ans array
if (odd !== null) {
ans[i] = odd;
}
 
// Remove all null values from the ans array and join the remaining values into a single string
let res = ans.filter(x => x !== null).join('');
 
// Print the resulting string
console.log(res);
}
 
// Example usage of the solve function with two different input arrays
let a1 = ["aba", "aba"];
let n1 = a1.length;
solve(a1, n1);
let a2 = ["abc", "dba", "kop", "abd", "cba"];
let n2 = a2.length;
solve(a2, n2);


Output

abaaba
abdcbaabcdba

Time Complexity : O(n)

Auxiliary Space : O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments