Given an array of size n. The problem is to find the length of the subsequence in the given array such that all the elements of the subsequence are sorted in increasing order and also they are alternately odd and even. 
Note that the subsequence could start either with the odd number or with the even number.
Examples:
Input : arr[] = {5, 6, 9, 4, 7, 8}
Output : 6
{5, 6, 9,4,7,8} is the required longest
increasing odd even subsequence which is the array itself in this case
Input : arr[] = {1, 12, 2, 22, 5, 30, 31, 14, 17, 11}
{1,12,5,30,31,14,17} is the required longest
increasing odd even subsequence
Output : 7
Naive Approach: Consider all subsequences and select the ones with alternate odd even numbers in increasing order. Out of them select the longest one. This has an exponential time complexity.
Efficient Approach:
Let L(i) be the length of the LIOES (Longest Increasing Odd Even Subsequence) ending at index i such that arr[i] is the last element of the LIOES.
Then, L(i) can be recursively written as:
- L(i) = 1 + max( L(j) ) where 0 < j < i and (arr[j] < arr[i]) and (arr[i]+arr[j])%2 != 0; or
- L(i) = 1, if no such j exists.
To find the LIOES for a given array, we need to return max(L(i)) where 0 < i < n.
Implementation: A dynamic programming approach has been implemented below for the above mentioned recursive relation.
C++
| // C++ implementation to find the longest// increasing odd even subsequence#include <bits/stdc++.h>usingnamespacestd;// function to find the longest// increasing odd even subsequenceintlongOddEvenIncSeq(intarr[], intn){    // lioes[i] stores longest increasing odd    // even subsequence ending at arr[i]    intlioes[n];    // to store the length of longest increasing    // odd even subsequence    intmaxLen = 0;    // Initialize LIOES values for all indexes    for(inti = 0; i < n; i++)        lioes[i] = 1;    // Compute optimized LIOES values    // in bottom up manner    for(inti = 1; i < n; i++)        for(intj = 0; j < i; j++)            if(arr[i] > arr[j] &&                (arr[i] + arr[j]) % 2 != 0                && lioes[i] < lioes[j] + 1)                lioes[i] = lioes[j] + 1;    // Pick maximum of all LIOES values    for(inti = 0; i < n; i++)        if(maxLen < lioes[i])            maxLen = lioes[i];    // required maximum length    returnmaxLen;}// Driver program to test aboveintmain(){    intarr[] = { 1, 12, 2, 22, 5, 30,                     31, 14, 17, 11 };    intn = sizeof(arr) / sizeof(n);    cout << "Longest Increasing Odd Even "         << "Subsequence: "         << longOddEvenIncSeq(arr, n);    return0;} | 
Java
| // Java implementation to find the longest// increasing odd even subsequenceimportjava.util.*;importjava.lang.*;publicclassGfG{        // function to find the longest    // increasing odd even subsequence    publicstaticintlongOddEvenIncSeq(intarr[],                                            intn)    {        // lioes[i] stores longest increasing odd        // even subsequence ending at arr[i]        int[] lioes = newint[n];        // to store the length of longest         // increasing odd even subsequence        intmaxLen = 0;        // Initialize LIOES values for all indexes        for(inti = 0; i < n; i++)            lioes[i] = 1;        // Compute optimized LIOES values        // in bottom up manner        for(inti = 1; i < n; i++)            for(intj = 0; j < i; j++)                if(arr[i] > arr[j] &&                 (arr[i] + arr[j]) % 2!= 0                    && lioes[i] < lioes[j] + 1)                    lioes[i] = lioes[j] + 1;        // Pick maximum of all LIOES values        for(inti = 0; i < n; i++)            if(maxLen < lioes[i])                maxLen = lioes[i];        // required maximum length        returnmaxLen;    }    // driver function    publicstaticvoidmain(String argc[]){        int[] arr = newint[]{ 1, 12, 2, 22,                      5, 30, 31, 14, 17, 11};        intn = 10;        System.out.println("Longest Increasing Odd"                          + " Even Subsequence: "                       + longOddEvenIncSeq(arr, n));    }}/* This code is contributed by Sagar Shukla */ | 
Python3
| # Python3 implementation to find the longest# increasing odd even subsequence# function to find the longest# increasing odd even subsequencedeflongOddEvenIncSeq( arr , n ):    # lioes[i] stores longest increasing odd    # even subsequence ending at arr[i]    lioes =list()        # to store the length of longest increasing    # odd even subsequence    maxLen =0        # Initialize LIOES values for all indexes    fori inrange(n):        lioes.append(1)            # Compute optimized LIOES values    # in bottom up manner    i=1    fori inrange(n):        forj inrange(i):            if(arr[i] > arr[j] and                (arr[i] +arr[j]) %2!=0and                lioes[i] < lioes[j] +1):                    lioes[i] =lioes[j] +1        # Pick maximum of all LIOES values    fori inrange(n):        ifmaxLen < lioes[i]:            maxLen =lioes[i]                # required maximum length    returnmaxLen    # Driver to test abovearr =[ 1, 12, 2, 22, 5, 30, 31, 14, 17, 11]n =len(arr)print("Longest Increasing Odd Even "+      "Subsequence: ",longOddEvenIncSeq(arr, n))                # This code is contributed by "Sharad_Bhardwaj". | 
C#
| // C# implementation to find the longest// increasing odd even subsequenceusingSystem;classGFG {    // function to find the longest    // increasing odd even subsequence    publicstaticintlongOddEvenIncSeq(int[] arr,                                            intn)    {        // lioes[i] stores longest increasing odd        // even subsequence ending at arr[i]        int[] lioes = newint[n];        // to store the length of longest        // increasing odd even subsequence        intmaxLen = 0;        // Initialize LIOES values for all indexes        for(inti = 0; i < n; i++)            lioes[i] = 1;        // Compute optimized LIOES values        // in bottom up manner        for(inti = 1; i < n; i++)            for(intj = 0; j < i; j++)                if(arr[i] > arr[j] &&                   (arr[i] + arr[j]) % 2 != 0 &&                    lioes[i] < lioes[j] + 1)                                        lioes[i] = lioes[j] + 1;        // Pick maximum of all LIOES values        for(inti = 0; i < n; i++)            if(maxLen < lioes[i])                maxLen = lioes[i];        // required maximum length        returnmaxLen;    }        // driver function    publicstaticvoidMain()    {        int[] arr = newint[]{ 1, 12, 2, 22,                               5, 30, 31, 14, 17, 11 };        intn = 10;        Console.Write("Longest Increasing Odd"                    + " Even Subsequence: "                    + longOddEvenIncSeq(arr, n));    }}// This code is contributed by Sam007 | 
PHP
| <?php // PHP implementation to find the longest// increasing odd even subsequence// function to find the longest// increasing odd even subsequencefunctionlongOddEvenIncSeq(&$arr, $n){    // lioes[i] stores longest increasing     // odd even subsequence ending at arr[i]    $lioes= array_fill(0, $n, NULL);    // to store the length of longest     // increasing odd even subsequence    $maxLen= 0;    // Initialize LIOES values for     // all indexes    for($i= 0; $i< $n; $i++)        $lioes[$i] = 1;    // Compute optimized LIOES values    // in bottom up manner    for($i= 1; $i< $n; $i++)        for($j= 0; $j< $i; $j++)            if($arr[$i] > $arr[$j] &&             ($arr[$i] + $arr[$j]) % 2 != 0 &&                 $lioes[$i] < $lioes[$j] + 1)                $lioes[$i] = $lioes[$j] + 1;    // Pick maximum of all LIOES values    for($i= 0; $i< $n; $i++)        if($maxLen< $lioes[$i])            $maxLen= $lioes[$i];    // required maximum length    return$maxLen;}// Driver Code$arr= array( 1, 12, 2, 22, 5, 30,                     31, 14, 17, 11) ;$n= sizeof($arr);echo"Longest Increasing Odd Even ".        "Subsequence: ". longOddEvenIncSeq($arr, $n);// This code is contributed // by ChitraNayal?> | 
Javascript
| <script>// javascript program to find the longest// increasing odd even subsequence    // function to find the longest    // increasing odd even subsequence    functionlongOddEvenIncSeq(arr, n)    {            // lioes[i] stores longest increasing odd        // even subsequence ending at arr[i]        let lioes = [];         // to store the length of longest        // increasing odd even subsequence        let maxLen = 0;         // Initialize LIOES values for all indexes        for(let i = 0; i < n; i++)            lioes[i] = 1;         // Compute optimized LIOES values        // in bottom up manner        for(let i = 1; i < n; i++)            for(let j = 0; j < i; j++)                if(arr[i] > arr[j] &&                (arr[i] + arr[j]) % 2 != 0                    && lioes[i] < lioes[j] + 1)                    lioes[i] = lioes[j] + 1;         // Pick maximum of all LIOES values        for(let i = 0; i < n; i++)            if(maxLen < lioes[i])                maxLen = lioes[i];         // required maximum length        returnmaxLen;    }// Driver code    let arr = [ 1, 12, 2, 22,                     5, 30, 31, 14, 17, 11 ];        let n = 10;        document.write("Longest Increasing Odd"                          + " Even Subsequence: "                       + longOddEvenIncSeq(arr, n));        // This code is contributed by sanjoy_62.</script> | 
Longest Increasing Odd Even Subsequence: 5
Time Complexity: O(n2). 
Auxiliary Space: O(n). 
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

 
                                    







