Tuesday, January 7, 2025
Google search engine
HomeLanguagesDynamic ProgrammingLongest Common Subsequence with at most k changes allowed

Longest Common Subsequence with at most k changes allowed

Given two sequence P and Q of numbers. The task is to find Longest Common Subsequence of two sequences if we are allowed to change at most k element in first sequence to any value.

Examples: 

Input : P = { 8, 3 }
        Q = { 1, 3 }
        K = 1
Output : 2
If we change first element of first
sequence from 8 to 1, both sequences 
become same.

Input : P = { 1, 2, 3, 4, 5 }
        Q = { 5, 3, 1, 4, 2 }
        K = 1
Output : 3
By changing first element of first
sequence to 5 to get the LCS ( 5, 3, 4 }.

The idea is to use Dynamic Programming. Define a 3D matrix dp[][][], where dp[i][j][k] defines the Longest Common Subsequence for the first i numbers of first array, first j number of second array when we are allowed to change at max k number in the first array. 

Therefore, recursion will look like 

If P[i] != Q[j], 
    dp[i][j][k] = max(dp[i - 1][j][k], 
                      dp[i][j - 1][k], 
                      dp[i - 1][j - 1][k - 1] + 1) 
If P[i] == Q[j], 
    dp[i][j][k] = max(dp[i - 1][j][k], 
                      dp[i][j - 1][k], 
                      dp[i - 1][j - 1][k] + 1)

Below is the implementation of this approach:

C++




// CPP program to find LCS of two arrays with
// k changes allowed in first array.
#include <bits/stdc++.h>
using namespace std;
#define MAX 10
  
// Return LCS with at most k changes allowed.
int lcs(int dp[MAX][MAX][MAX], int arr1[], int n,
                       int arr2[], int m, int k)
{
    // If at most changes is less than 0.
    if (k < 0)
        return -1e7;
  
    // If any of two array is over.
    if (n < 0 || m < 0)
        return 0;
  
    // Making a reference variable to dp[n][m][k]
    int& ans = dp[n][m][k];
  
    // If value is already calculated, return
    // that value.
    if (ans != -1)
        return ans;
  
    // calculating LCS with no changes made.
    ans = max(lcs(dp, arr1, n - 1, arr2, m, k), 
              lcs(dp, arr1, n, arr2, m - 1, k));
  
    // calculating LCS when array element are same.
    if (arr1[n-1] == arr2[m-1])
        ans = max(ans, 1 + lcs(dp, arr1, n - 1, 
                                arr2, m - 1, k));
  
    // calculating LCS with changes made.
    ans = max(ans, 1 + lcs(dp, arr1, n - 1, 
                          arr2, m - 1, k - 1));
  
    return ans;
}
  
// Driven Program
int main()
{
    int k = 1;
    int arr1[] = { 1, 2, 3, 4, 5 };
    int arr2[] = { 5, 3, 1, 4, 2 };
    int n = sizeof(arr1) / sizeof(arr1[0]);
    int m = sizeof(arr2) / sizeof(arr2[0]);
  
    int dp[MAX][MAX][MAX];
    memset(dp, -1, sizeof(dp));
  
    cout << lcs(dp, arr1, n, arr2, m, k) << endl;
  
    return 0;
}


Java




// Java program to find LCS of two arrays with 
// k changes allowed in first array.
import java.util.*;
import java.io.*;
  
class GFG 
{
    static int MAX = 10;
  
    // Return LCS with at most k changes allowed.
    static int lcs(int[][][] dp, int[] arr1,    
                   int n, int[] arr2, int m, int k) 
    {
  
        // If at most changes is less than 0.
        if (k < 0)
            return -10000000;
  
        // If any of two array is over.
        if (n < 0 || m < 0)
            return 0;
  
        // Making a reference variable to dp[n][m][k]
        int ans = dp[n][m][k];
  
        // If value is already calculated, return
        // that value.
        if (ans != -1)
            return ans;
  
        try 
        {
  
            // calculating LCS with no changes made.
            ans = Math.max(lcs(dp, arr1, n - 1, arr2, m, k), 
                           lcs(dp, arr1, n, arr2, m - 1, k));
  
            // calculating LCS when array element are same.
            if (arr1[n - 1] == arr2[m - 1])
                ans = Math.max(ans, 1 + lcs(dp, arr1, n - 1
                                                arr2, m - 1, k));
  
            // calculating LCS with changes made.
            ans = Math.max(ans, 1 + lcs(dp, arr1, n - 1,
                                            arr2, m - 1, k - 1));
        } catch (Exception e) { }
          // Storing the value in dp.
          dp[n][m][k] = ans;
        return ans;
    }
  
    // Driver Code
    public static void main(String[] args) 
    {
        int k = 1;
        int[] arr1 = { 1, 2, 3, 4, 5 };
        int[] arr2 = { 5, 3, 1, 4, 2 };
        int n = arr1.length;
        int m = arr2.length;
  
        int[][][] dp = new int[MAX][MAX][MAX];
        for (int i = 0; i < MAX; i++)
            for (int j = 0; j < MAX; j++)
                for (int l = 0; l < MAX; l++)
                    dp[i][j][l] = -1;
  
        System.out.println(lcs(dp, arr1, n, arr2, m, k));
    }
}
  
// This code is contributed by
// krishnat208026


Python3




# Python3 program to find LCS of two arrays 
# with k changes allowed in the first array. 
MAX = 10 
  
# Return LCS with at most k changes allowed. 
def lcs(dp, arr1, n, arr2, m, k): 
   
    # If at most changes is less than 0. 
    if k < 0:
        return -(10 ** 7
  
    # If any of two array is over. 
    if n < 0 or m < 0
        return 0 
  
    # Making a reference variable to dp[n][m][k] 
    ans = dp[n][m][k] 
  
    # If value is already calculated, 
    # return that value. 
    if ans != -1
        return ans 
  
    # calculating LCS with no changes made. 
    ans = max(lcs(dp, arr1, n - 1, arr2, m, k), 
            lcs(dp, arr1, n, arr2, m - 1, k)) 
  
    # calculating LCS when array element are same. 
    if arr1[n-1] == arr2[m-1]: 
        ans = max(ans, 1 + lcs(dp, arr1, n - 1
                                arr2, m - 1, k)) 
  
    # calculating LCS with changes made. 
    ans = max(ans, lcs(dp, arr1, n - 1
                        arr2, m - 1, k - 1)) 
      
    dp[n][m][k]=ans
    return dp[n][m][k]
   
# Driven Program 
if __name__ == "__main__":
   
    k = 1 
    arr1 = [1, 2, 3, 4, 5
    arr2 = [5, 3, 1, 4, 2]  
    n = len(arr1) 
    m = len(arr2) 
  
    dp = [[[-1 for i in range(MAX)] for j in range(MAX)] for k in range(MAX)]
      
    print(lcs(dp, arr1, n, arr2, m, k)) 
  
# This code is contributed by Rituraj Jain


C#




// C# program to find LCS of two arrays with 
// k changes allowed in first array.
using System;
  
class GFG 
{
    static int MAX = 10;
  
    // Return LCS with at most 
    // k changes allowed.
    static int lcs(int[,,] dp, int[] arr1, 
                        int n, int[] arr2, 
                        int m, int k) 
    {
  
        // If at most changes is less than 0.
        if (k < 0)
            return -10000000;
  
        // If any of two array is over.
        if (n < 0 || m < 0)
            return 0;
  
        // Making a reference variable
        // to dp[n,m,k]
        int ans = dp[n, m, k];
  
        // If value is already calculated, 
        // return that value.
        if (ans != -1)
            return ans;
  
        try
        {
  
            // calculating LCS with no changes made.
            ans = Math.Max(lcs(dp, arr1, n - 1, 
                                   arr2, m, k), 
                           lcs(dp, arr1, n,
                                   arr2, m - 1, k));
  
            // calculating LCS when
            // array element are same.
            if (arr1[n - 1] == arr2[m - 1])
                ans = Math.Max(ans, 1 + 
                           lcs(dp, arr1, n - 1, 
                                   arr2, m - 1, k));
  
            // calculating LCS with changes made.
            ans = Math.Max(ans, 1 + 
                       lcs(dp, arr1, n - 1,
                               arr2, m - 1, k - 1));
        } catch (Exception e) { }
        return ans;
    }
  
    // Driver Code
    public static void Main(String[] args) 
    {
        int k = 1;
        int[] arr1 = { 1, 2, 3, 4, 5 };
        int[] arr2 = { 5, 3, 1, 4, 2 };
        int n = arr1.Length;
        int m = arr2.Length;
  
        int[,,] dp = new int[MAX, MAX, MAX];
        for (int i = 0; i < MAX; i++)
            for (int j = 0; j < MAX; j++)
                for (int l = 0; l < MAX; l++)
                    dp[i, j, l] = -1;
  
        Console.WriteLine(lcs(dp, arr1, n, 
                                  arr2, m, k));
    }
}
  
// This code is contributed by PrinciRaj1992


Javascript




<script>
  
// Javascript program to find LCS of two
// arrays with k changes allowed in 
// first array.
let MAX = 10;
  
// Return LCS with at most k changes allowed.
function lcs(dp, arr1, n, arr2, m, k) 
{
      
    // If at most changes is less than 0.
    if (k < 0)
        return -10000000;
  
    // If any of two array is over.
    if (n < 0 || m < 0)
        return 0;
  
    // Making a reference variable 
    // to dp[n][m][k]
    let ans = dp;
  
    // If value is already calculated,
    // return that value.
    if (ans != -1)
        return ans;
  
    try 
    {
          
        // Calculating LCS with no changes made.
        ans = Math.max(lcs(dp, arr1, n - 1, arr2, m, k), 
                       lcs(dp, arr1, n, arr2, m - 1, k));
  
        // Calculating LCS when array element are same.
        if (arr1[n - 1] == arr2[m - 1])
            ans = Math.max(ans, 1 + lcs(dp, arr1, n - 1, 
                                            arr2, m - 1, k));
  
        // Calculating LCS with changes made.
        ans = Math.max(ans, 1 + lcs(dp, arr1, n - 1,
                                        arr2, m - 1, k - 1));
    } catch (e) { }
    return ans;
}
  
// Driver Code
let k = 0;
let arr1 = [ 1, 2, 3, 4, 5 ];
let arr2 = [ 5, 3, 1, 4, 2 ];
let n = arr1.length;
let m = arr2.length;
  
let dp = new Array(MAX);
for(let i = 0; i < MAX; i++)
    for(let j = 0; j < MAX; j++)
        for(let l = 0; l < MAX; l++)
            dp = -1;
  
document.write(lcs(dp, arr1, n, arr2, m, k));
  
// This code is contributed by shivanisinghss2110
  
</script>


Output

4

Time Complexity: O(N*M*K).
Auxiliary Space: O(MAX3)

This article is contributed by Anuj Chauhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments