Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AILongest common anagram subsequence from N strings

Longest common anagram subsequence from N strings

Given N strings. Find the longest possible subsequence from each of these N strings such that they are anagram to each other. The task is to print the lexicographically largest subsequence among all the subsequences. 

Examples: 

Input: s[] = { neveropen, esrka, efrsk } 
Output: ske 
First string has “eks”, Second string has “esk”, third string has “esk”. These three are anagrams. “ske” is lexicographically large. 

Input: string s[] = { loop, lol, olive } 
Output: ol

Approach :  

  • Make a 2-D array of n*26 to store the frequency of each character in string.
  • After making frequency array, traverse in reverse direction for each digit and find the string which has the minimum characters of this type.
  • After complete reverse traversal, print the character that occurs the minimum number of times since it gives the lexicographically largest string.

Below is the implementation of the above approach.  

C++14




// C++ program to find longest possible
// subsequence anagram of N strings.
#include <bits/stdc++.h>
using namespace std;
const int MAX_CHAR = 26;
 
// function to store frequency of
// each character in each string
void frequency(int fre[][MAX_CHAR], string s[], int n)
{
    for (int i = 0; i < n; i++) {
        string str = s[i];
        for (int j = 0; j < str.size(); j++)
            fre[i][str[j] - 'a']++;       
    }
}
 
// function to Find longest possible sequence of N
// strings which is anagram to each other
void LongestSequence(int fre[][MAX_CHAR], int n)
{
    // to get lexicographical largest sequence.
    for (int i = MAX_CHAR-1; i >= 0; i--) {
 
        // find minimum of that character
        int mi = fre[0][i];
        for (int j = 1; j < n; j++)
            mi = min(fre[j][i], mi);       
 
        // print that character
        // minimum number of times
        while (mi--)
            cout << (char)('a' + i);       
    }
}
 
// Driver code
int main()
{
 
    string s[] = { "loo", "lol", "olive" };
    int n = sizeof(s)/sizeof(s[0]);
 
    // to store frequency of each character in each string
    int fre[n][26] = { 0 };
 
    // to get frequency of each character
    frequency(fre, s, n);
 
    // function call
    LongestSequence(fre, n);
 
    return 0;
}


Java




// Java program to find longest
// possible subsequence anagram
// of N strings.
class GFG
{
final int MAX_CHAR = 26;
 
// function to store frequency
// of each character in each
// string
static void frequency(int fre[][],
                      String s[], int n)
{
    for (int i = 0; i < n; i++)
    {
        String str = s[i];
        for (int j = 0;
                 j < str.length(); j++)
            fre[i][str.charAt(j) - 'a']++;    
    }
}
 
// function to Find longest
// possible sequence of N
// strings which is anagram
// to each other
static void LongestSequence(int fre[][],
                            int n)
{
    // to get lexicographical
    // largest sequence.
    for (int i = 25; i >= 0; i--)
    {
 
        // find minimum of
        // that character
        int mi = fre[0][i];
        for (int j = 1; j < n; j++)
            mi = Math.min(fre[j][i], mi);    
 
        // print that character
        // minimum number of times
        while (mi--!=0)
            System.out.print((char)('a' + i));    
    }
}
 
// Driver code
public static void main(String args[])
{
 
    String s[] = { "loo", "lol", "olive" };
    int n = s.length;
 
    // to store frequency of each
    // character in each string
    int fre[][] = new int[n][26] ;
 
    // to get frequency
    // of each character
    frequency(fre, s, n);
 
    // function call
    LongestSequence(fre, n);
}
}
 
// This code is contributed
// by Arnab Kundu


Python3




# Python3 program to find longest possible
# subsequence anagram of N strings.
 
# Function to store frequency of
# each character in each string
def frequency(fre, s, n):
 
    for i in range(0, n):
        string = s[i]
        for j in range(0, len(string)):
            fre[i][ord(string[j]) - ord('a')] += 1       
 
# Function to Find longest possible sequence 
# of N strings which is anagram to each other
def LongestSequence(fre, n):
 
    # to get lexicographical largest sequence.
    for i in range(MAX_CHAR-1, -1, -1):
 
        # find minimum of that character
        mi = fre[0][i]
        for j in range(1, n):
            mi = min(fre[j][i], mi)        
 
        # print that character
        # minimum number of times
        while mi:
            print(chr(ord('a') + i), end = "")
            mi -= 1
     
# Driver code
if __name__ == "__main__":
 
    s = ["loo", "lol", "olive"]
    n = len(s)
    MAX_CHAR = 26
 
    # to store frequency of each
    # character in each string
    fre = [[0 for i in range(26)]
              for j in range(n)]
 
    # To get frequency of each character
    frequency(fre, s, n)
 
    # Function call
    LongestSequence(fre, n)
 
# This code is contributed by
# Rituraj Jain


C#




// c# program to find longest
// possible subsequence anagram
// of N strings.
using System;
 
class GFG
{
public readonly int MAX_CHAR = 26;
 
// function to store frequency
// of each character in each
// string
public static void frequency(int[,] fre,
                             string[] s, int n)
{
    for (int i = 0; i < n; i++)
    {
        string str = s[i];
        for (int j = 0;
                 j < str.Length; j++)
        {
            fre[i, str[j] - 'a']++;
        }
    }
}
 
// function to Find longest
// possible sequence of N
// strings which is anagram
// to each other
public static void LongestSequence(int[, ] fre,
                                   int n)
{
    // to get lexicographical
    // largest sequence.
    for (int i = 24; i >= 0; i--)
    {
 
        // find minimum of
        // that character
        int mi = fre[0, i];
        for (int j = 1; j < n; j++)
        {
            mi = Math.Min(fre[j, i], mi);
        }
 
        // print that character
        // minimum number of times
        while (mi--!=0)
        {
            Console.Write((char)('a' + i));
        }
    }
}
 
// Driver code
public static void Main(string[] args)
{
 
    string[] s = new string[] {"loo", "lol", "olive"};
    int n = s.Length;
 
    // to store frequency of each
    // character in each string
    int[, ] fre = new int[n, 26];
 
    // to get frequency
    // of each character
    frequency(fre, s, n);
 
    // function call
    LongestSequence(fre, n);
}
}
 
// This code is contributed by Shrikanth13


Javascript




<script>
 
// JavaScript program to find longest
// possible subsequence anagram
// of N strings.
 
let MAX_CHAR = 26;
 
// function to store frequency
// of each character in each
// string
function frequency(fre,s,n)
{
    for (let i = 0; i < n; i++)
    {
        let str = s[i];
        for (let j = 0;
                 j < str.length; j++)
            fre[i][str[j].charCodeAt(0) - 'a'.charCodeAt(0)]++;   
    }
}
 
// function to Find longest
// possible sequence of N
// strings which is anagram
// to each other
function LongestSequence(fre,n)
{
    // to get lexicographical
    // largest sequence.
    for (let i = 24; i >= 0; i--)
    {
  
        // find minimum of
        // that character
        let mi = fre[0][i];
        for (let j = 1; j < n; j++)
            mi = Math.min(fre[j][i], mi);   
  
        // print that character
        // minimum number of times
        while (mi--!=0)
            document.write(String.fromCharCode
            ('a'.charCodeAt(0) + i));   
    }
}
 
// Driver code
let s=["loo", "lol", "olive"];
let n = s.length;
  
// to store frequency of each
// character in each string
let fre = new Array(n) ;
for(let i=0;i<n;i++)
{
    fre[i]=new Array(26);
    for(let j=0;j<26;j++)
        fre[i][j]=0;
}
 
// to get frequency
// of each character
frequency(fre, s, n);
 
// function call
LongestSequence(fre, n);
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output

ol

Complexity Analysis:

  • Time Complexity: O(n2)
  • Auxiliary space: O(1). 

Please suggest if someone has a better solution which is more efficient in terms of space and time.
This article is contributed by Aarti_Rathi.

Approach#2: Using counter

This approach finds the longest common anagram subsequence from a given list of strings by first counting the frequency of characters in each string using the Counter function from the collections module. It then finds the intersection of all the character frequency dictionaries to obtain the common characters, and finally returns the sorted string of common characters.

Algorithm

1. Create a list of character frequency dictionaries for each string using Counter function
2. Find the intersection of all frequency dictionaries using bitwise & operator
3. Obtain the common characters by concatenating the elements of the intersection frequency dictionary
4. Return the sorted common characters as the longest common anagram subsequence

Python3




from collections import Counter
 
def longest_common_anagram_subsequence(strings):
    # Count character frequencies in each string and find the intersection of all dictionaries
    freq_dicts = [Counter(string) for string in strings]
    common_freq = freq_dicts[0]
    for freq_dict in freq_dicts[1:]:
        common_freq &= freq_dict
     
    # Find the longest anagram subsequence using the common character frequencies
    common_chars = ''.join(common_freq.elements())
    return ''.join(sorted(common_chars))
 
# Example usage
strings = ["neveropen", "esrka", "efrsk"]
print(longest_common_anagram_subsequence(strings)) 
 
strings = ["loop", "lol", "olive"]
print(longest_common_anagram_subsequence(strings))


Output

eks
lo

Time Complexity: O(mnlogn), where m is the length of the longest string and n is the number of strings. The time complexity is dominated by the sorting operation at the end of the function.

Space Complexity: O(mn), where m is the length of the longest string and n is the number of strings. The space complexity is dominated by the list of character frequency dictionaries.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments