Sunday, November 17, 2024
Google search engine
HomeData Modelling & AILongest Bitonic Subsequence | DP-15

Longest Bitonic Subsequence | DP-15

Given an array arr[0 … n-1] containing n positive integers, a subsequence of arr[] is called Bitonic if it is first increasing, then decreasing. Write a function that takes an array as argument and returns the length of the longest bitonic subsequence. 
A sequence, sorted in increasing order is considered Bitonic with the decreasing part as empty. Similarly, decreasing order sequence is considered Bitonic with the increasing part as empty. 
Examples:

Input arr[] = {1, 11, 2, 10, 4, 5, 2, 1};
Output: 6 (A Longest Bitonic Subsequence of length 6 is 1, 2, 10, 4, 2, 1)

Input arr[] = {12, 11, 40, 5, 3, 1}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 12, 11, 5, 3, 1)

Input arr[] = {80, 60, 30, 40, 20, 10}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 80, 60, 30, 20, 10)

Source: Microsoft Interview Question

Recommended Practice

Solution 
This problem is a variation of standard Longest Increasing Subsequence (LIS) problem. Let the input array be arr[] of length n. We need to construct two arrays lis[] and lds[] using Dynamic Programming solution of LIS problem. lis[i] stores the length of the Longest Increasing subsequence ending with arr[i]. lds[i] stores the length of the longest Decreasing subsequence starting from arr[i]. Finally, we need to return the max value of lis[i] + lds[i] – 1 where i is from 0 to n-1.
Following is the implementation of the above Dynamic Programming solution. 

C++




/* Dynamic Programming implementation of longest bitonic subsequence problem */
#include<stdio.h>
#include<stdlib.h>
 
/* lbs() returns the length of the Longest Bitonic Subsequence in
    arr[] of size n. The function mainly creates two temporary arrays
    lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
 
    lis[i] ==> Longest Increasing subsequence ending with arr[i]
    lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
int lbs( int arr[], int n )
{
   int i, j;
 
   /* Allocate memory for LIS[] and initialize LIS values as 1 for
      all indexes */
   int lis[n];
   for (i = 0; i < n; i++)
      lis[i] = 1;
 
   /* Compute LIS values from left to right */
   for (i = 1; i < n; i++)
      for (j = 0; j < i; j++)
         if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
            lis[i] = lis[j] + 1;
 
   /* Allocate memory for lds and initialize LDS values for
      all indexes */
   int lds[n];
   for (i = 0; i < n; i++)
      lds[i] = 1;
 
   /* Compute LDS values from right to left */
   for (i = n-2; i >= 0; i--)
      for (j = n-1; j > i; j--)
         if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
            lds[i] = lds[j] + 1;
 
 
   /* Return the maximum value of lis[i] + lds[i] - 1*/
   int max = lis[0] + lds[0] - 1;
   for (i = 1; i < n; i++)
     if (lis[i] + lds[i] - 1 > max)
         max = lis[i] + lds[i] - 1;
   return max;
}
 
/* Driver program to test above function */
int main()
{
  int arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
              13, 3, 11, 7, 15};
  int n = sizeof(arr)/sizeof(arr[0]);
  printf("Length of LBS is %d\n", lbs( arr, n ) );
  return 0;
}


Java




/* Dynamic Programming implementation in Java for longest bitonic
   subsequence problem */
import java.util.*;
import java.lang.*;
import java.io.*;
 
class LBS
{
    /* lbs() returns the length of the Longest Bitonic Subsequence in
    arr[] of size n. The function mainly creates two temporary arrays
    lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
 
    lis[i] ==> Longest Increasing subsequence ending with arr[i]
    lds[i] ==> Longest decreasing subsequence starting with arr[i]
    */
    static int lbs( int arr[], int n )
    {
        int i, j;
 
        /* Allocate memory for LIS[] and initialize LIS values as 1 for
            all indexes */
        int[] lis = new int[n];
        for (i = 0; i < n; i++)
            lis[i] = 1;
 
        /* Compute LIS values from left to right */
        for (i = 1; i < n; i++)
            for (j = 0; j < i; j++)
                if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
                    lis[i] = lis[j] + 1;
 
        /* Allocate memory for lds and initialize LDS values for
            all indexes */
        int[] lds = new int [n];
        for (i = 0; i < n; i++)
            lds[i] = 1;
 
        /* Compute LDS values from right to left */
        for (i = n-2; i >= 0; i--)
            for (j = n-1; j > i; j--)
                if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
                    lds[i] = lds[j] + 1;
 
 
        /* Return the maximum value of lis[i] + lds[i] - 1*/
        int max = lis[0] + lds[0] - 1;
        for (i = 1; i < n; i++)
            if (lis[i] + lds[i] - 1 > max)
                max = lis[i] + lds[i] - 1;
 
        return max;
    }
 
    public static void main (String[] args)
    {
        int arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
                    13, 3, 11, 7, 15};
        int n = arr.length;
        System.out.println("Length of LBS is "+ lbs( arr, n ));
    }
}


Python3




# Dynamic Programming implementation of longest bitonic subsequence problem
"""
lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
 
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
"""
 
def lbs(arr):
    n = len(arr)
 
 
    # allocate memory for LIS[] and initialize LIS values as 1
    # for all indexes
    lis = [1 for i in range(n+1)]
 
    # Compute LIS values from left to right
    for i in range(1 , n):
        for j in range(0 , i):
            if ((arr[i] > arr[j]) and (lis[i] < lis[j] +1)):
                lis[i] = lis[j] + 1
 
    # allocate memory for LDS and initialize LDS values for
    # all indexes
    lds = [1 for i in range(n+1)]
     
    # Compute LDS values from right to left
    for i in reversed(range(n-1)): #loop from n-2 downto 0
        for j in reversed(range(i-1 ,n)): #loop from n-1 downto i-1
            if(arr[i] > arr[j] and lds[i] < lds[j] + 1):
                lds[i] = lds[j] + 1
 
 
    # Return the maximum value of (lis[i] + lds[i] - 1)
    maximum = lis[0] + lds[0] - 1
    for i in range(1 , n):
        maximum = max((lis[i] + lds[i]-1), maximum)
     
    return maximum
 
# Driver program to test the above function
arr =  [0 , 8 , 4, 12, 2, 10 , 6 , 14 , 1 , 9 , 5 , 13,
        3, 11 , 7 , 15]
print ("Length of LBS is",lbs(arr))
 
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#




/* Dynamic Programming implementation in
   C# for longest bitonic subsequence problem */
using System;
 
class LBS {
     
    /* lbs() returns the length of the Longest Bitonic Subsequence in
    arr[] of size n. The function mainly creates two temporary arrays
    lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
 
    lis[i] ==> Longest Increasing subsequence ending with arr[i]
    lds[i] ==> Longest decreasing subsequence starting with arr[i]
    */
    static int lbs(int[] arr, int n)
    {
        int i, j;
 
        /* Allocate memory for LIS[] and initialize
           LIS values as 1 for all indexes */
        int[] lis = new int[n];
        for (i = 0; i < n; i++)
            lis[i] = 1;
 
        /* Compute LIS values from left to right */
        for (i = 1; i < n; i++)
            for (j = 0; j < i; j++)
                if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
                    lis[i] = lis[j] + 1;
 
        /* Allocate memory for lds and initialize LDS values for
            all indexes */
        int[] lds = new int[n];
        for (i = 0; i < n; i++)
            lds[i] = 1;
 
        /* Compute LDS values from right to left */
        for (i = n - 2; i >= 0; i--)
            for (j = n - 1; j > i; j--)
                if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
                    lds[i] = lds[j] + 1;
 
        /* Return the maximum value of lis[i] + lds[i] - 1*/
        int max = lis[0] + lds[0] - 1;
        for (i = 1; i < n; i++)
            if (lis[i] + lds[i] - 1 > max)
                max = lis[i] + lds[i] - 1;
 
        return max;
    }
     
    // Driver code
    public static void Main()
    {
        int[] arr = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
                                      13, 3, 11, 7, 15 };
        int n = arr.Length;
        Console.WriteLine("Length of LBS is " + lbs(arr, n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// Dynamic Programming implementation
// of longest bitonic subsequence problem
 
/* lbs() returns the length of the Longest
   Bitonic Subsequence in arr[] of size n.
   The function mainly creates two temporary
   arrays lis[] and lds[] and returns the
   maximum lis[i] + lds[i] - 1.
 
   lis[i] ==> Longest Increasing subsequence
              ending with arr[i]
   lds[i] ==> Longest decreasing subsequence
              starting with arr[i]
*/
function lbs(&$arr, $n)
{
 
    /* Allocate memory for LIS[] and initialize
       LIS values as 1 for all indexes */
    $lis = array_fill(0, $n, NULL);
    for ($i = 0; $i < $n; $i++)
        $lis[$i] = 1;
     
    /* Compute LIS values from left to right */
    for ($i = 1; $i < $n; $i++)
        for ($j = 0; $j < $i; $j++)
            if ($arr[$i] > $arr[$j] &&
                $lis[$i] < $lis[$j] + 1)
                $lis[$i] = $lis[$j] + 1;
     
    /* Allocate memory for lds and initialize
       LDS values for all indexes */
    $lds = array_fill(0, $n, NULL);
    for ($i = 0; $i < $n; $i++)
        $lds[$i] = 1;
     
    /* Compute LDS values from right to left */
    for ($i = $n - 2; $i >= 0; $i--)
        for ($j = $n - 1; $j > $i; $j--)
            if ($arr[$i] > $arr[$j] &&
                $lds[$i] < $lds[$j] + 1)
                $lds[$i] = $lds[$j] + 1;
     
    /* Return the maximum value of
       lis[i] + lds[i] - 1*/
    $max = $lis[0] + $lds[0] - 1;
    for ($i = 1; $i < $n; $i++)
        if ($lis[$i] + $lds[$i] - 1 > $max)
            $max = $lis[$i] + $lds[$i] - 1;
    return $max;
}
 
// Driver Code
$arr = array(0, 8, 4, 12, 2, 10, 6, 14,
             1, 9, 5, 13, 3, 11, 7, 15);
$n = sizeof($arr);
echo "Length of LBS is " . lbs( $arr, $n );
 
// This code is contributed by ita_c
?>


Javascript




<script>
 
/* Dynamic Programming implementation in JavaScript for longest bitonic
   subsequence problem */   
     
    /* lbs() returns the length of the Longest Bitonic Subsequence in
    arr[] of size n. The function mainly creates two temporary arrays
    lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
   
    lis[i] ==> Longest Increasing subsequence ending with arr[i]
    lds[i] ==> Longest decreasing subsequence starting with arr[i]
    */
    function lbs(arr,n)
    {
        let i, j;
        /* Allocate memory for LIS[] and initialize LIS values as 1 for
            all indexes */
        let lis = new Array(n)
        for (i = 0; i < n; i++)
            lis[i] = 1;
         
        /* Compute LIS values from left to right */
        for (i = 1; i < n; i++)
            for (j = 0; j < i; j++)
                if (arr[i] > arr[j] && lis[i] < lis[j] + 1)
                    lis[i] = lis[j] + 1;
   
        /* Allocate memory for lds and initialize LDS values for
            all indexes */
        let lds = new Array(n);
        for (i = 0; i < n; i++)
            lds[i] = 1;
   
        /* Compute LDS values from right to left */
        for (i = n-2; i >= 0; i--)
            for (j = n-1; j > i; j--)
                if (arr[i] > arr[j] && lds[i] < lds[j] + 1)
                    lds[i] = lds[j] + 1;
   
   
        /* Return the maximum value of lis[i] + lds[i] - 1*/
        let max = lis[0] + lds[0] - 1;
        for (i = 1; i < n; i++)
            if (lis[i] + lds[i] - 1 > max)
                max = lis[i] + lds[i] - 1;
   
        return max;
    }
    let arr=[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
    let n = arr.length;
    document.write("Length of LBS is "+ lbs( arr, n ));
         
    // This code is contributed by avanitrachhadiya2155
     
</script>


Output

Length of LBS is 7

Time Complexity: O(n^2) 
Auxiliary Space: O(n)
 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments