Saturday, January 11, 2025
Google search engine
HomeData Modelling & AILongest alternating sub-array starting from every index in a Binary Array

Longest alternating sub-array starting from every index in a Binary Array

Given an array containing only 0s and 1s. For each index ‘i‘(0 index), find length of the longest alternating sub-array starting from ‘i‘ to ‘j‘ i.e., ai..j for i <= j < n. Alternating sub-array means that any two adjacent elements should be different.

Example: 

Input: arr[] = {1, 0, 1, 0, 0, 1}
Output: 4 3 2 1 2 1 
Explanation
Length for index '0': {1 0 1 0} => 4
Length for index '1': {0 1 0}   => 3
Length for index '2': {1 0}     => 2
Length for index '3': {0}       => 1
Length for index '4': {0 1}     => 2
Length for index '5': {1}       => 1

Simple approach is to iterate for every index by using two ‘for loops’ for finding the length of each index. The outer loop picks a starting point ‘i’ and the inner loop considers all sub-arrays starting from ‘i’. Time complexity of this approach is O(n2) which is not sufficient for large value of ‘n’.

Better approach is to use Dynamic programming. First of all, let’s see how to check for alternating sub-array. To check whether two elements are alternating or not, we can simply take XOR(Ex-OR) of both of them and then compare with ‘0’ and ‘1’.  

  • If there XOR is ‘0’, that means both numbers are not alternating(equal elements).
  • If there XOR is ‘1’, that means both are alternating(different elements)

Let len[i] denotes length of an alternating sub-array starting at position ‘i’. If arr[i] and arr[i+1] have different values, then len[i] will be one more than len[i+1]. Otherwise if they are same elements, len[i] will be just 1. 

Below is the implementation of above approach: 

C++




// C++ program to calculate longest alternating
// sub-array for each index elements
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate alternating sub-
// array for each index of array elements
void alternateSubarray(bool arr[], int n)
{
    int len[n];
  
    // Initialize the base state of len[]
    len[n - 1] = 1;
  
    // Calculating value for each element
    for (int i = n - 2; i >= 0; --i) {
        // If both elements are different
        // then add 1 to next len[i+1]
        if (arr[i] ^ arr[i + 1] == 1)
            len[i] = len[i + 1] + 1;
  
        // else initialize to 1
        else
            len[i] = 1;
    }
  
    // Print lengths of binary subarrays.
    for (int i = 0; i < n; ++i)
        cout << len[i] << " ";
}
  
// Driver program
int main()
{
    bool arr[] = { 1, 0, 1, 0, 0, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    alternateSubarray(arr, n);
    return 0;
}


Java




// Java program to calculate longest alternating
// sub-array for each index elements
import java.util.*;
import java.io.*;
  
class GFG {
      
// Function to calculate alternating sub-
// array for each index of array elements
static void alternateSubarray(boolean arr[], int n) 
{
    int len[] = new int[n];
  
    // Initialize the base state of len[]
    len[n - 1] = 1;
  
    // Calculating value for each element
    for (int i = n - 2; i >= 0; --i) {
          
    // If both elements are different
    // then add 1 to next len[i+1]
    if (arr[i] ^ arr[i + 1] == true)
        len[i] = len[i + 1] + 1;
  
    // else initialize to 1
    else
        len[i] = 1;
    }
  
    // Print lengths of binary subarrays.
    for (int i = 0; i < n; ++i)
    System.out.print(len[i] + " ");
}
  
// Driver code
public static void main(String[] args) 
{
    boolean arr[] = {true, false, true, false, false, true};
    int n = arr.length;
    alternateSubarray(arr, n);
}
}
  
// This code is contributed by Anant Agarwal.


Python3




# Python program to calculate
# longest alternating
# sub-array for each index elements
  
# Function to calculate alternating sub-
# array for each index of array elements
def alternateSubarray(arr,n):
  
    len=[]
    for i in range(n+1):
        len.append(0)
          
    # Initialize the base state of len[]
    len[n - 1] = 1
   
    # Calculating value for each element
    for i in range(n - 2,-1,-1):
          
        # If both elements are different
        # then add 1 to next len[i+1]
        if (arr[i] ^ arr[i + 1] == True):
            len[i] = len[i + 1] + 1
   
        # else initialize to 1
        else:
            len[i] = 1
      
   
    # Print lengths of binary subarrays.
    for i in range(n):
        print(len[i] , " ",end="")
   
# Driver code
  
arr = [ True,False, True, False, False, True ]
n = len(arr)
  
alternateSubarray(arr, n)
  
# This code is contributed
# by Anant Agarwal.


C#




// C# program to calculate longest 
// alternating sub-array for each 
// index elements
using System;
  
class GFG {
      
    // Function to calculate alternating sub-
    // array for each index of array elements
    static void alternateSubarray(bool []arr,
                                        int n) 
    {
          
        int []len = new int[n];
      
        // Initialize the base state of len[]
        len[n - 1] = 1;
      
        // Calculating value for each element
        for (int i = n - 2; i >= 0; --i)
        {
              
            // If both elements are different
            // then add 1 to next len[i+1]
            if (arr[i] ^ arr[i + 1] == true)
                len[i] = len[i + 1] + 1;
          
            // else initialize to 1
            else
                len[i] = 1;
        }
      
        // Print lengths of binary subarrays.
        for (int i = 0; i < n; ++i)
            Console.Write(len[i] + " ");
    }
      
    // Driver code
    public static void Main() 
    {
        bool []arr = {true, false, true
                         false, false, true};
        int n = arr.Length;
          
        alternateSubarray(arr, n);
    }
}
  
// This code is contributed by vt_m.


PHP




<?php 
// PHP program to calculate longest alternating
// sub-array for each index elements
  
// Function to calculate alternating sub-
// array for each index of array elements
function alternateSubarray(&$arr, $n)
{
    $len = array_fill(0, $n, NULL);
  
    // Initialize the base state of len[]
    $len[$n - 1] = 1;
  
    // Calculating value for each element
    for ($i = $n - 2; $i >= 0; --$i)
    {
        // If both elements are different
        // then add 1 to next len[i+1]
        if ($arr[$i] ^ $arr[$i + 1] == 1)
            $len[$i] = $len[$i + 1] + 1;
  
        // else initialize to 1
        else
            $len[$i] = 1;
    }
  
    // Print lengths of binary subarrays.
    for ($i = 0; $i < $n; ++$i)
        echo $len[$i] . " ";
}
  
// Driver Code
$arr = array(1, 0, 1, 0, 0, 1);
$n = sizeof($arr);
alternateSubarray($arr, $n);
  
// This code is contributed by ita_c
?>


Javascript




<script>
// JavaScript program to calculate longest alternating 
// sub-array for each index elements 
  
// Function to calculate alternating sub- 
// array for each index of array elements 
function alternateSubarray(arr, n) 
    let len = new Array(n); 
  
    // Initialize the base state of len[] 
    len[n - 1] = 1; 
  
    // Calculating value for each element 
    for (let i = n - 2; i >= 0; --i) 
    {
      
        // If both elements are different 
        // then add 1 to next len[i+1] 
        if (arr[i] ^ arr[i + 1] == 1) 
            len[i] = len[i + 1] + 1; 
  
        // else initialize to 1 
        else
            len[i] = 1; 
    
  
    // Print lengths of binary subarrays. 
    for (let i = 0; i < n; ++i) 
        document.write(len[i] + " "); 
  
// Driver program 
    let arr = [ 1, 0, 1, 0, 0, 1 ]; 
    let n = arr.length; 
    alternateSubarray(arr, n); 
  
  
// This code is contributed by Surbhi Tyagi.
</script>


Output

4 3 2 1 2 1 

Time complexity: O(n) 
Auxiliary space: O(n)

Another Efficient approach is, instead of storing all the sub-array elements in len[] array, we can directly print it until mismatch(equal adjacent elements) is found. When a mismatch is found, we print count from current value to 0. 

Implementation:

C++




// C++ program to calculate longest alternating
// sub-array for each index elements
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate alternating sub-array
// for each index of array elements
void alternateSubarray(bool arr[], int n)
{
    // Initialize count variable for storing
    // length of sub-array
    int count = 1;
  
    // Initialize 'prev' variable which
    // indicates the previous element
    // while traversing for index 'i'
    int prev = arr[0];
    for (int i = 1; i < n; ++i) {
  
        // If both elements are same
        // print elements because alternate
        // element is not found for current
        // index
        if ((arr[i] ^ prev) == 0)
        {
            // print count and decrement it.
            while (count)
                cout << count-- << " ";
        }
  
        // Increment count for next element
        ++count;
  
        // Re-initialize previous variable
        prev = arr[i];
    }
  
    // If elements are still available after
    // traversing whole array, print it
    while (count)
        cout << count-- << " ";
}
  
// Driver program
int main()
{
    bool arr[] = { 1, 0, 1, 0, 0, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    alternateSubarray(arr, n);
    return 0;
}


Java




// Java program to calculate longest alternating
// sub-array for each index elements
import java.io.*;
import java.util.*;
  
class GFG {
  
    // Function to calculate alternating sub-array
    // for each index of array elements
    static void alternateSubarray(boolean arr[], int n)
    {
        // Initialize count variable for storing
        // length of sub-array
        int count = 1;
  
        // Initialize 'prev' variable which
        // indicates the previous element
        // while traversing for index 'i'
        boolean prev = arr[0];
        for (int i = 1; i < n; ++i) {
  
            // If both elements are same
            // print elements because alternate
            // element is not found for current
            // index
            if ((arr[i] ^ prev) == false) {
                // print count and decrement it.
                while (count > 0) {
                    System.out.print(count-- + " ");
                }
            }
  
            // Increment count for next element
            ++count;
  
            // Re-initialize previous variable
            prev = arr[i];
        }
  
        // If elements are still available after
        // traversing whole array, print it
        while (count != 0) {
            System.out.print(count-- + " ");
        }
    }
  
    // Driver program
    public static void main(String args[])
    {
        boolean arr[]
            = { true, false, true, false, false, true };
        int n = arr.length;
        alternateSubarray(arr, n);
    }
}
/*This code is contributed by 29AjayKumar*/


Python3




# Python 3 program to calculate longest 
# alternating sub-array for each index elements
  
# Function to calculate alternating sub-array
# for each index of array elements
def alternateSubarray(arr, n):
      
    # Initialize count variable for 
    # storing length of sub-array
    count = 1
  
    # Initialize 'prev' variable which
    # indicates the previous element
    # while traversing for index 'i'
    prev = arr[0]
    for i in range(1, n):
          
        # If both elements are same, print 
        # elements because alternate element 
        # is not found for current index
        if ((arr[i] ^ prev) == 0):
              
            # print count and decrement it.
            while (count):
                print(count, end = " ")
                count -= 1
  
        # Increment count for next element
        count += 1
  
        # Re-initialize previous variable
        prev = arr[i]
  
    # If elements are still available after
    # traversing whole array, print it
    while (count):
        print(count, end = " ")
        count -= 1
  
# Driver Code
if __name__ == '__main__':
    arr = [1, 0, 1, 0, 0, 1]
    n = len(arr)
    alternateSubarray(arr, n)
  
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to calculate longest alternating
// sub-array for each index elements 
using System; 
   
public class Test{
      
// Function to calculate alternating sub-array
// for each index of array elements
    static void alternateSubarray(bool []arr, int n) {
        // Initialize count variable for storing
        // length of sub-array
        int count = 1;
   
        // Initialize 'prev' variable which
        // indicates the previous element
        // while traversing for index 'i'
        bool prev = arr[0];
        for (int i = 1; i < n; ++i) {
   
            // If both elements are same
            // print elements because alternate
            // element is not found for current
            // index
            if ((arr[i] ^ prev) == false) {
                // print count and decrement it.
                while (count > 0) {
                    Console.Write(count-- + " ");
                }
            }
   
            // Increment count for next element
            ++count;
   
            // Re-initialize previous variable
            prev = arr[i];
        }
   
        // If elements are still available after
        // traversing whole array, print it
        while (count != 0) {
            Console.Write(count-- + " ");
        }
    }
   
// Driver program
    public static void Main() {
        bool []arr = {true, false, true, false, false, true};
        int n = arr.Length;
        alternateSubarray(arr, n);
    }
}
/*This code is contributed by 29AjayKumar*/


PHP




<?php
// PHP program to calculate longest alternating
// sub-array for each index elements
  
// Function to calculate alternating sub-array
// for each index of array elements
function alternateSubarray($arr, $n)
{
      
    // Initialize count variable for storing
    // length of sub-array
    $count = 1;
  
    // Initialize 'prev' variable which
    // indicates the previous element
    // while traversing for index 'i'
    $prev = $arr[0];
    for ($i = 1; $i < $n; ++$i)
    {
  
        // If both elements are same
        // print elements because alternate
        // element is not found for current
        // index
        if (($arr[$i] ^ $prev) == 0)
        {
            // print count and decrement it.
            while ($count)
                echo $count-- , " ";
        }
  
        // Increment count for next element
        ++$count;
  
        // Re-initialize previous variable
        $prev = $arr[$i];
    }
  
    // If elements are still available after
    // traversing whole array, print it
    while ($count)
        echo $count-- , " ";
}
  
    // Driver Code
    $arr = array(1, 0, 1, 0, 0, 1);
    $n = sizeof($arr) ;
    alternateSubarray($arr, $n);
      
// This code is contributed by jit_t.
?>


Javascript




<script>
  
// Javascript program to calculate longest
// alternating sub-array for each index elements
  
// Function to calculate alternating sub-array
// for each index of array elements
function alternateSubarray(arr, n)
{
      
    // Initialize count variable for storing
    // length of sub-array
    let count = 1;
  
    // Initialize 'prev' variable which
    // indicates the previous element
    // while traversing for index 'i'
    let prev = arr[0];
      
    for(let i = 1; i < n; ++i) 
    {
          
        // If both elements are same
        // print elements because alternate
        // element is not found for current
        // index
        if ((arr[i] ^ prev) == false)
        {
              
            // Print count and decrement it.
            while (count > 0) 
            {
                document.write(count-- + " ");
            }
        }
  
        // Increment count for next element
        ++count;
  
        // Re-initialize previous variable
        prev = arr[i];
    }
  
    // If elements are still available after
    // traversing whole array, print it
    while (count != 0)
    {
        document.write(count-- + " ");
    }
}
  
// Driver code
let arr = [ true, false, true, false, false, true ];
let n = arr.length;
  
alternateSubarray(arr, n);
  
// This code is contributed by suresh07
  
</script>


Output

4 3 2 1 2 1 

Time complexity: O(n) 
Auxiliary space: O(1)

This article is contributed by Shubham Bansal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments