Monday, January 13, 2025
Google search engine
HomeData Modelling & AILexicographically smallest permutation of size A having B integers exceeding all preceding...

Lexicographically smallest permutation of size A having B integers exceeding all preceding integers

Given two positive integers, A and B, the task is to generate the lexicographically smallest permutation of all integers up to A in which exactly B integers are greater than all its preceding elements.

Examples:

Input: A = 3, B = 2
Output : [1, 3, 2]
Explanation:
All possible permutations of integers [1, 3] are [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]. Out of these permutations, three permutations {(1, 3, 2), (2, 1, 3), (2, 3, 1)} satisfy the necessary condition. The lexicographically smallest permutation of the three is (1, 3, 2).

Input: A = 4, B = 4
Output: [1, 2, 3, 4]

Approach: Follow the steps below to solve the problem:

  1. Generate all possible permutations of integers from [1, A] using inbuilt function permutations() from the itertools library. Basically, it returns a tuple consisting of all possible permutations.
  2. Now, check if the array’s maximum element and the number of elements should satisfy the problem’s condition count is equal or not.
  3. If equal then there is only one possible list of elements that satisfy the condition. Logically they are simply the range of A number of integers starting from 1 in sorted order.
  4. If not, take each tuple from the permutations list and then calculate the number of integers that are present in the tuple which is greater than all the previous integers in that tuple.
  5. If the count is equal to B then load that tuple to another new list.
  6. Test the lists of elements that are loaded by a new list whether they ordered in lexicographically or not if not ordered then arrange them manually and return the minimum of it.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
vector<int> getSmallestArray(int A, int B)
{
    // if A and B are equal
    if (A == B) {
        vector<int> arr;
        for (int i = 1; i <= A; i++) {
            arr.push_back(i);
        }
        return arr;
    }
 
    // Initialize pos_list to store list
    // of elements which are satisfying
    // the given conditions
    vector<vector<int>> pos_list;
 
    // Vector to store all possible permutations
    vector<int> arr;
    for (int i = 1; i <= A; i++) {
        arr.push_back(i);
    }
 
    do {
        // Stores the count of elements
        // greater than all the previous
        // elements
        int c = 0;
 
        int i = 0;
        int j = 1;
        while (j <= A - 1) {
            if (arr[j] > arr[i]) {
                i++;
            } else if (i == j) {
                c++;
                j++;
                i = 0;
            } else {
                j++;
                i = 0;
            }
        }
 
        // If count is equal to B
        if (c + 1 == B) {
            pos_list.push_back(arr);
        }
    } while (next_permutation(arr.begin(), arr.end()));
 
    // If only one tuple satisfies
    // the given condition
    if (pos_list.size() == 1) {
        return pos_list[0];
    }
 
    // Otherwise
    int small = INT_MAX;
    vector<int> ans;
    for (auto i : pos_list) {
        int num = 0;
        int mul = 1;
        for (int j = i.size() - 1; j >= 0; j--) {
            num += mul * i[j];
            mul *= 10;
        }
 
        if (num < small) {
            small = num;
            ans = i;
        }
    }
 
    // Return the answer
    return ans;
}
 
int main()
{
    int A = 3, B = 2;
    vector<int> arr = getSmallestArray(A, B);
    for (int i : arr) {
        cout << i << " ";
    }
    return 0;
}


Java




import java.util.*;
 
public class Main {
  public static List<Integer> getSmallestArray(int A, int B) {
    // if A and B are equal
    if (A == B) {
      List<Integer> arr = new ArrayList<>();
      for (int i = 1; i <= A; i++) {
        arr.add(i);
      }
      return arr;
    }
 
    // Initialize pos_list to store list
    // of elements which are satisfying
    // the given conditions
    List<List<Integer>> pos_list = new ArrayList<>();
 
    // Vector to store all possible permutations
    List<Integer> arr = new ArrayList<>();
    for (int i = 1; i <= A; i++) {
      arr.add(i);
    }
 
    do {
      // Stores the count of elements
      // greater than all the previous
      // elements
      int c = 0;
 
      int i = 0;
      int j = 1;
      while (j <= A - 1) {
        if (arr.get(j) > arr.get(i)) {
          i++;
        } else if (i == j) {
          c++;
          j++;
          i = 0;
        } else {
          j++;
          i = 0;
        }
      }
 
      // If count is equal to B
      if (c + 1 == B) {
        pos_list.add(new ArrayList<>(arr));
      }
    } while (nextPermutation(arr));
 
    // If only one tuple satisfies
    // the given condition
    if (pos_list.size() == 1) {
      return pos_list.get(0);
    }
 
    // Otherwise
    int small = Integer.MAX_VALUE;
    List<Integer> ans = new ArrayList<>();
    for (List<Integer> i : pos_list) {
      int num = 0;
      int mul = 1;
      for (int j = i.size() - 1; j >= 0; j--) {
        num += mul * i.get(j);
        mul *= 10;
      }
 
      if (num < small) {
        small = num;
        ans = new ArrayList<>(i);
      }
    }
 
    // Return the answer
    return ans;
  }
 
  // Function to generate next permutation
  private static boolean nextPermutation(List<Integer> arr) {
    int i = arr.size() - 2;
    while (i >= 0 && arr.get(i) >= arr.get(i + 1)) {
      i--;
    }
    if (i < 0) {
      return false;
    }
    int j = arr.size() - 1;
    while (j > i && arr.get(j) <= arr.get(i)) {
      j--;
    }
    swap(arr, i, j);
    reverse(arr, i + 1, arr.size() - 1);
    return true;
  }
 
  // Function to swap two elements in a list
  private static void swap(List<Integer> arr, int i, int j) {
    int temp = arr.get(i);
    arr.set(i, arr.get(j));
    arr.set(j, temp);
  }
 
  // Function to reverse a list
  private static void reverse(List<Integer> arr, int i, int j) {
    while (i < j) {
      swap(arr, i++, j--);
    }
  }
 
 
  public static void main(String[] args) {
    int A = 3, B = 2;
    List<Integer> arr = getSmallestArray(A, B);
    for (int num : arr) {
      System.out.print(num + " ");
    }
  }
}


Python3




# Python3 program for the above approach
from itertools import permutations
 
# Function to find lexicographically
# smallest permutation of [1, A]
# having B integers greater than
# all the previous elements
 
def getSmallestArray(A, B):
 
    # if A and B are equal
    if A == B:
        return list(range(1, A + 1))
 
    # Initialize pos_list to store list
    # of elements which are satisfying
    # the given conditions
    pos_list = []
 
    # List to store all possible permutations
    Main_List = list(permutations(range(1, A + 1), A))
 
    # Check all the permutations for
    # the given condition
    for L in Main_List:
 
        # Stores the count of elements
        # greater than all the previous
        # elements
        c = 0
 
        i = 0
        j = 1
        while j <= (len(L)-1):
 
            if L[j] > L[i]:
                i += 1
 
            elif i == j:
                c += 1
                j += 1
                i = 0
 
            else:
                j += 1
                i = 0
 
        # If count is equal to B
        if (c + 1) == B:
 
            pos_list.append(list(L))
 
    # If only one tuple satisfies
    # the given condition
    if len(pos_list) == 1:
 
        return pos_list[0]
 
    # Otherwise
    satisfied_list = []
    for i in pos_list:
 
        array_test = ''.join(map(str, i))
        satisfied_list.append(int(array_test))
 
        # Evaluate lexicographically smallest tuple
    small = min(satisfied_list)
    str_arr = list(str(small))
    ans = list(map(int, str_arr))
 
    # Return the answer
    return ans
 
 
# Driver Code
 
A = 3
B = 2
 
print(getSmallestArray(A, B))


C#




// C// program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
 
public class Program
{
     
    // Function to find lexicographically
    // smallest permutation of [1, A]
    // having B integers greater than
    // all the previous elements
    public static List<int> getSmallestArray(int A, int B)
    {
        // if A and B are equal
        if (A == B)
        {
            return Enumerable.Range(1, A).ToList();
        }
 
        // Initialize pos_list to store list
        // of elements which are satisfying
        // the given conditions
        List<List<int>> pos_list = new List<List<int>>();
         
        // List to store all possible permutations
        List<List<int>> Main_List = getPermutations(Enumerable.Range(1, A).ToList());
         
        // Check all the permutations for
        // the given condition
        foreach (List<int> L in Main_List)
        {
            // Stores the count of elements
            // greater than all the previous
            // elements
            int c = 0;
            int i = 0;
            int j = 1;
            while (j <= (L.Count - 1))
            {
                if (L[j] > L[i])
                {
                    i += 1;
                }
                else if (i == j)
                {
                    c += 1;
                    j += 1;
                    i = 0;
                }
                else
                {
                    j += 1;
                    i = 0;
                }
            }
             
            // If count is equal to B
            if ((c + 1) == B)
            {
                pos_list.Add(L.ToList());
            }
        }
         
        // If only one tuple satisfies
        // the given condition
        if (pos_list.Count == 1)
        {
            return pos_list[0];
        }
 
        // Otherwise
        List<int> satisfied_list = new List<int>();
        foreach (List<int> i in pos_list)
        {
            string array_test = string.Join("", i);
            satisfied_list.Add(int.Parse(array_test));
        }
         
        // Evaluate lexicographically smallest tuple
        int small = satisfied_list.Min();
        string str_arr = small.ToString();
        List<int> ans = str_arr.Select(c => int.Parse(c.ToString())).ToList();
         
        // Return the answer
        return ans;
    }
 
    public static List<List<int>> getPermutations(List<int> arr)
    {
        List<List<int>> result = new List<List<int>>();
        if (arr.Count == 1)
        {
            result.Add(arr.ToList());
            return result;
        }
 
        foreach (int x in arr)
        {
            List<int> remaining = new List<int>(arr);
            remaining.Remove(x);
            foreach (List<int> L in getPermutations(remaining))
            {
                L.Insert(0, x);
                result.Add(L.ToList());
            }
        }
 
        return result;
    }
     
    // Driver Code
    public static void Main()
    {
        int A = 3;
        int B = 2;
        List<int> smallestArray = getSmallestArray(A, B);
        Console.WriteLine(string.Join(", ", smallestArray));
    }
}
 
 
// This code is contributed by shivhack999


Javascript




// js equivalent of the above code
const getSmallestArray = (A, B) => {
  // if A and B are equal
  if (A === B) {
    let arr = [];
    for (let i = 1; i <= A; i++) {
      arr.push(i);
    }
    return arr;
  }
  // Initialize pos_list to store list
  // of elements which are satisfying
  // the given conditions
  let pos_list = [];
  // Vector to store all possible permutations
  let arr = [];
  for (let i = 1; i <= A; i++) {
    arr.push(i);
  }
 
  do {
    // Stores the count of elements
    // greater than all the previous
    // elements
    let c = 0;
 
    let i = 0;
    let j = 1;
    while (j <= A - 1) {
      if (arr[j] > arr[i]) {
        i++;
      } else if (i === j) {
        c++;
        j++;
        i = 0;
      } else {
        j++;
        i = 0;
      }
    }
 
    // If count is equal to B
    if (c + 1 === B) {
      pos_list.push([...arr]);
    }
  } while (nextPermutation(arr));
 
  // If only one tuple satisfies
  // the given condition
  if (pos_list.length === 1) {
    return pos_list[0];
  }
 
  // Otherwise
  let small = Number.MAX_VALUE;
  let ans = [];
  for (let i of pos_list) {
    let num = 0;
    let mul = 1;
    for (let j = i.length - 1; j >= 0; j--) {
      num += mul * i[j];
      mul *= 10;
    }
 
    if (num < small) {
      small = num;
      ans = [...i];
    }
  }
 
  // Return the answer
  return ans;
};
 
// Function to generate next permutation
const nextPermutation = (arr) => {
  let i = arr.length - 2;
  while (i >= 0 && arr[i] >= arr[i + 1]) {
    i--;
  }
  if (i < 0) {
    return false;
  }
  let j = arr.length - 1;
  while (j > i && arr[j] <= arr[i]) {
    j--;
  }
  swap(arr, i, j);
  reverse(arr, i + 1, arr.length - 1);
  return true;
};
 
// Function to swap two elements in a list
const swap = (arr, i, j) => {
  let temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
};
 
// Function to reverse a list
const reverse = (arr, i, j) => {
  while (i < j) {
    swap(arr, i++, j--);
  }
};
 
const main = () => {
  let A = 3,
    B = 2;
  let arr = getSmallestArray(A, B); let ans="";
  for (let num of arr) {
    ans = ans + num + ' ';
  } console.log(ans);
};
 
main();


Output: 

[1, 3, 2]

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

Efficient Approach: Follow the steps below to optimize the above approach:

  1. Initialize an array arr[] consisting of first A natural numbers sequentially.
  2. Create a resultant array ans[] and append the first (B – 1) elements from arr[].
  3. So the resultant array has (B – 1) elements that satisfy the given condition.
  4. Now insert the maximum element from arr[] into the resultant array. Remove the inserted elements arr[]
  5. Since we already have B elements, the resultant array has B elements that satisfy the given condition.
  6. Now, copy all remaining elements from arr[] one by one to the resultant array and print the resultant array.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to find lexicographically
// smallest permutation of [1, A]
// having B integers greater than
// all the previous elements
vector<int> getSmallestArray(int A, int B)
{
     
    // Initial array
    vector<int>arr(A);
    for(int i = 0; i < A; i++)
        arr[i] = i + 1;
         
    // Resultant array
    vector<int>ans(A);
 
    // Append the first (B-1) elements
    // to the resultant array 
    for(int i = 0; i < B - 1; i++)
        ans[i] = arr[i];
         
    // Append the maximum from the
    // initial array 
    ans[B - 1] = arr[A - 1];
     
    // Copy the remaining elements 
    for(int i = B; i < A; i++)
        ans[i] = arr[i - 1];
         
    // Return the answer
    return ans;
}
 
// Driver Code
int main()
{
    int A = 3;
    int B = 2;
     
    vector<int>ans = getSmallestArray(A, B);
     
    for(auto i : ans)
        cout << i << " ";
}
 
// This code is contributed by Stream_Cipher


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find lexicographically
// smallest permutation of [1, A]
// having B integers greater than
// all the previous elements
@SuppressWarnings("unchecked")
static void getSmallestArray(int A, int B)
{
     
    // Initial array
    Vector arr = new Vector();
    for(int i = 0; i < A; i++)
        arr.add(i + 1);
         
    // Resultant array
    Vector ans = new Vector();
 
    // Append the first (B-1) elements
    // to the resultant array 
    for(int i = 0; i < B - 1; i++)
        ans.add(arr.get(i));
         
    // Append the maximum from the
    // initial array 
    ans.add(arr.get(A - 1));
     
    // Copy the remaining elements 
    for(int i = B; i < A; i++)
        ans.add(arr.get(i - 1));
         
    // Print the answer
    for(int i = 0; i < ans.size(); i++)
        System.out.print(ans.get(i) + " ");
}
 
// Driver Code
public static void main(String args[])
{
    int A = 3;
    int B = 2;
     
    getSmallestArray(A, B);
}
}
 
// This code is contributed by Stream_Cipher


Python3




# Python3 program for the above approach
 
# Function to find lexicographically
# smallest permutation of [1, A]
# having B integers greater than
# all the previous elements
 
def getSmallestArray(A, B):
 
    # Initial array
    arr = (list(range(1, (A + 1))))
 
    # Resultant array
    ans = []
 
    # Append the first (B-1) elements
    # to the resultant array
    ans[0:B-1] = arr[0:B-1]
 
    # Delete the appended elements
    # from the initial array
    del arr[0:B-1]
 
    # Append the maximum from the
    # initial array
    ans.append(arr[-1])
 
    # Delete the appended maximum
    del arr[-1]
 
    # Copy the remaining elements
    ans[B:] = arr[:]
 
    # Return the answer
    return ans
 
# Driver Code
 
A = 3
B = 2
 
print(getSmallestArray(A, B))


C#




// C# program for the above approach
using System.Collections.Generic;
using System;
 
class GFG{
 
// Function to find lexicographically
// smallest permutation of [1, A]
// having B integers greater than
// all the previous elements
 static void getSmallestArray(int A, int B)
{
     
    // Initial array
    List<int> arr = new List<int>();
    for(int i = 0; i < A; i++)
        arr.Add(i + 1);
         
    // Resultant array
    List<int> ans = new List<int>();
 
    // Append the first (B-1) elements
    // to the resultant array 
    for(int i = 0; i < B - 1; i++)
        ans.Add(arr[i]);
         
    // Append the maximum from the
    // initial array 
    ans.Add(arr[A - 1]);
     
    // Copy the remaining elements 
    for(int i = B; i < A; i++)
        ans.Add(arr[i - 1]);
         
    // Print the answer
    for(int i = 0; i < A; i++)
        Console.Write(ans[i] + " ");
}
 
// Driver Code
public static void Main()
{
    int A = 3;
    int B = 2;
     
    getSmallestArray(A,B);
}
}
 
// This code is contributed by Stream_Cipher


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find lexicographically
// smallest permutation of [1, A]
// having B integers greater than
// all the previous elements
function getSmallestArray( A, B)
{
     
    // Initial array
    let arr = [];
 
    for(let i = 0; i < A; i++)
        arr[i] = i + 1;
         
    // Resultant array
    let ans = [];
    for(let i = 0;i<A;i++)
        ans.push(0);
 
    // Append the first (B-1) elements
    // to the resultant array 
    for(let i = 0; i < B - 1; i++)
        ans[i] = arr[i];
 
    // Append the maximum from the
    // initial array 
    ans[B - 1] = arr[A - 1];
 
    // Copy the remaining elements 
    for(let i = B; i < A; i++)
        ans[i] = arr[i - 1];
    // Return the answer
    return ans;
}
 
// Driver Code
let A = 3;
let B = 2;
let ans = getSmallestArray(A, B);
for(let i =0;i<ans.length;i++)
       document.write( ans[i] ," ");
 
</script>


Output: 

[1, 3, 2]

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments