Friday, January 10, 2025
Google search engine
HomeData Modelling & AILexicographically smallest Permutation of Array by reversing at most one Subarray

Lexicographically smallest Permutation of Array by reversing at most one Subarray

Given an array arr[] of size N which is a permutation from 1 to N, the task is to find the lexicographically smallest permutation that can be formed by reversing at most one subarray.

Examples:

Input : arr[] = {1, 3, 4, 2, 5}
Output : 1 2 4 3 5
Explanation: The subarray from index 1 to index 3 can be reversed to get the lexicographically smallest permutation.

Input : arr[] = {4, 3, 1, 2}
Output: 1 3 4 2

 

Approach: The idea to solve the problem is based on the traversal of the array

  • In the given problem the lexicographically smallest permutation can be obtained by placing the least number at its correct place by one reversal by traversing from left and checking (i+1) is equal to arr[i]
  • If it is not equal find the index of that i+1 in the array and reverse the subarray from ith index to the position (i+1).

Below is the implementation of the above approach.

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the
// Lexicographically smallest
// Permutation by one subarray reversal
void lexsmallest(vector<int>& arr, int n)
{
  
    // Initialize the variables
    // To store the first and last
    // Position of the subarray
    int first = -1, flag = 0, find = -1, last = -1;
  
    // Traverse the array
    // And check if arr[i]!=i+1
    for (int i = 0; i < n; i++) {
        if (arr[i] != i + 1) {
            flag = 1;
  
            // Mark the first position
            // Of the Subarray to be reversed
            first = i;
            find = i + 1;
            break;
        }
    }
  
    // If flag == 0, it is the
    // Smallest permutation,
    // So print the array
    if (flag == 0) {
        for (int i = 0; i < n; i++) {
            cout << arr[i] << " ";
        }
    }
  
    // Check where the minimum element is present
    else {
        for (int i = 0; i < n; i++) {
  
            // It is the last position
            // Of the subarray to be
            // Reversed
            if (arr[i] == find) {
                last = i;
                break;
            }
        }
  
        // Reverse the subarray
        // And print the array
        reverse(arr.begin() + first,
                arr.begin() + last + 1);
        for (int i = 0; i < n; i++) {
            cout << arr[i] << " ";
        }
    }
}
  
// Driver Code
int main()
{
    // Initialize the array arr[]
    vector<int> arr = { 1, 3, 4, 2, 5 };
    int N = arr.size();
  
    // Function call
    lexsmallest(arr, N);
    return 0;
}


Java




// Java code for the above approach
import java.util.*;
  
class GFG{
  
// Function to find the
// Lexicographically smallest
// Permutation by one subarray reversal
static void lexsmallest(int []arr, int n)
{
  
    // Initialize the variables
    // To store the first and last
    // Position of the subarray
    int first = -1, flag = 0, find = -1, last = -1;
  
    // Traverse the array
    // And check if arr[i]!=i+1
    for (int i = 0; i < n; i++) {
        if (arr[i] != i + 1) {
            flag = 1;
  
            // Mark the first position
            // Of the Subarray to be reversed
            first = i;
            find = i + 1;
            break;
        }
    }
  
    // If flag == 0, it is the
    // Smallest permutation,
    // So print the array
    if (flag == 0) {
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i]+ " ");
        }
    }
  
    // Check where the minimum element is present
    else {
        for (int i = 0; i < n; i++) {
  
            // It is the last position
            // Of the subarray to be
            // Reversed
            if (arr[i] == find) {
                last = i;
                break;
            }
        }
  
        // Reverse the subarray
        // And print the array
        arr = reverse(arr,first,last);
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i]+ " ");
        }
    }
}
static int[] reverse(int str[], int start, int end) {
  
    // Temporary variable to store character 
    int temp;
    while (start <= end) {
        // Swapping the first and last character 
        temp = str[start];
        str[start] = str[end];
        str[end] = temp;
        start++;
        end--;
    }
    return str;
}
    
// Driver Code
public static void main(String[] args)
{
    
    // Initialize the array arr[]
    int []arr = { 1, 3, 4, 2, 5 };
    int N = arr.length;
  
    // Function call
    lexsmallest(arr, N);
}
}
  
// This code contributed by shikhasingrajput


Python3




# Python code for the above approach
  
# Function to find the
# Lexicographically smallest
# Permutation by one subarray reversal
def lexsmallest(arr, n):
  
    # Initialize the variables
    # To store the first and last
    # Position of the subarray
    first = -1
    flag = 0
    find = -1
    last = -1
  
    # Traverse the array
    # And check if arr[i]!=i+1
    for i in range(0, n):
        if (arr[i] != i + 1):
            flag = 1
  
            # Mark the first position
            # Of the Subarray to be reversed
            first = i
            find = i + 1
            break
  
    # If flag == 0, it is the
    # Smallest permutation,
    # So print the array
    if (flag == 0):
        for i in range(0, n):
            print(arr[i], end=" ")
  
    # Check where the minimum element is present
    else:
        for i in range(0, n):
  
            # It is the last position
            # Of the subarray to be
            # Reversed
            if (arr[i] == find):
                last = i
                break
  
        # Reverse the subarray
        # And print the array
        arr[first: last + 1] = arr[first: last + 1][::-1]
  
        print(*arr)
  
# Driver Code
  
# Initialize the array arr[]
arr = [1, 3, 4, 2, 5]
N = len(arr)
  
# Function call
lexsmallest(arr, N)
  
# This code is contributed by Samim Hossain Mondal.


C#




// C# code for the above approach
using System;
  
class GFG{
  
  // Function to find the
  // Lexicographically smallest
  // Permutation by one subarray reversal
  static void lexsmallest(int []arr, int n)
  {
  
    // Initialize the variables
    // To store the first and last
    // Position of the subarray
    int first = -1, flag = 0, find = -1, last = -1;
  
    // Traverse the array
    // And check if arr[i]!=i+1
    for (int i = 0; i < n; i++) {
      if (arr[i] != i + 1) {
        flag = 1;
  
        // Mark the first position
        // Of the Subarray to be reversed
        first = i;
        find = i + 1;
        break;
      }
    }
  
    // If flag == 0, it is the
    // Smallest permutation,
    // So print the array
    if (flag == 0) {
      for (int i = 0; i < n; i++) {
        Console.Write(arr[i]+ " ");
      }
    }
  
    // Check where the minimum element is present
    else {
      for (int i = 0; i < n; i++) {
  
        // It is the last position
        // Of the subarray to be
        // Reversed
        if (arr[i] == find) {
          last = i;
          break;
        }
      }
  
      // Reverse the subarray
      // And print the array
      arr = reverse(arr,first,last);
      for (int i = 0; i < n; i++) {
        Console.Write(arr[i]+ " ");
      }
    }
  }
  static int[] reverse(int[] str, int start, int end) {
  
    // Temporary variable to store character 
    int temp;
    while (start <= end)
    {
        
      // Swapping the first and last character 
      temp = str[start];
      str[start] = str[end];
      str[end] = temp;
      start++;
      end--;
    }
    return str;
  }
  
  // Driver Code
  static public void Main (){
  
    // Initialize the array arr[]
    int [] arr = { 1, 3, 4, 2, 5 };
    int N = arr.Length;
  
    // Function call
    lexsmallest(arr, N);
  }
}
  
// This code is contributed by hrithikgarg03188.


Javascript




<script>
    // JavaScript code for the above approach
 
    // Function to find the
    // Lexicographically smallest
    // Permutation by one subarray reversal
    const lexsmallest = (arr, n) => {
 
        // Initialize the variables
        // To store the first and last
        // Position of the subarray
        let first = -1, flag = 0, find = -1, last = -1;
 
        // Traverse the array
        // And check if arr[i]!=i+1
        for (let i = 0; i < n; i++) {
            if (arr[i] != i + 1) {
                flag = 1;
 
                // Mark the first position
                // Of the Subarray to be reversed
                first = i;
                find = i + 1;
                break;
            }
        }
 
        // If flag == 0, it is the
        // Smallest permutation,
        // So print the array
        if (flag == 0) {
            for (let i = 0; i < n; i++) {
                document.write(`${arr[i]} `);
            }
        }
 
        // Check where the minimum element is present
        else {
            for (let i = 0; i < n; i++) {
 
                // It is the last position
                // Of the subarray to be
                // Reversed
                if (arr[i] == find) {
                    last = i;
                    break;
                }
            }
 
            // Reverse the subarray
            // And print the array
            arr.splice(first, last, ...arr.slice(first, last + 1).reverse());
            for (let i = 0; i < n; i++) {
                document.write(`${arr[i]} `);
            }
        }
    }
 
    // Driver Code
 
    // Initialize the array arr[]
    let arr = [1, 3, 4, 2, 5];
    let N = arr.length;
 
    // Function call
    lexsmallest(arr, N);
 
// This code is contributed by rakeshsahni
 
</script>


 
 

Output

1 2 4 3 5 

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Related Topic: Subarrays, Subsequences, and Subsets in Array

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
11 Jul, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments