Thursday, December 26, 2024
Google search engine
HomeData Modelling & AILexicographically largest permutation of the array such that a = a +...

Lexicographically largest permutation of the array such that a[i] = a[i-1] + gcd(a[i-1], a[i-2])

Given an array arr[] of size N (N > 2). The task is to find lexicographically largest permutation of the array such that arr[i] = arr[i – 1] + gcd(arr[i – 1], arr[i – 2]). If it is not possible to find such arrangement then print -1.
Examples: 
 

Input: arr[] = {4, 6, 2, 5, 3} 
Output: 2 3 4 5 6 
4 = 3 + gcd(2, 3) 
5 = 4 + gcd(3, 4) 
6 = 5 + gcd(4, 5)
Input: arr[] = {1, 6, 8} 
Output: -1 
 

 

Approach: If you are thinking about a solution that would involve sorting the array and then checking if the gcd condition holds. You are partly right, the numbers have to be in increasing sequence but except for one case where there could be a number that could appear at the start of the permutation. For Example, arr[] = {2, 4, 6, 8, 8} in this case, 8 can be placed at the starting of the array to get the permutation {8, 2, 4, 6, 8}. 
Corner cases: 
 

  • You couldn’t have more than two elements whose freq was more than 1.
  • If you had two zeros in the array, the only possible permutation possible was all 0’s

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find elements of vector
void Print(vector<int>& ans)
{
    for (auto i : ans)
        cout << i << " ";
}
 
// Function to find the lexicographically largest
// permutation that satisfies the given condition
void Permutation(int a[], int n)
{
    int flag = 0, pos;
 
    // To store the required ans
    vector<int> ans;
 
    // Sort the array
    sort(a, a + n);
 
    for (int i = 2; i < n; i++) {
 
        // If need to make arrangement
        if (a[i] != a[i - 1] + __gcd(a[i - 1], a[i - 2])) {
            flag = 1;
            pos = i;
            break;
        }
    }
 
    // If possible then check for lexicographically
    // larger permutation (if any possible)
    if (flag == 0) {
 
        // If larger arrangement is possible
        if (a[1] == a[0] + __gcd(a[0], a[n - 1])) {
            ans.push_back(a[n - 1]);
            for (int i = 0; i < n - 1; i++)
                ans.push_back(a[i]);
 
            Print(ans);
            return;
        }
 
        // If no other arrangement is possible
        else {
            for (int i = 0; i < n; i++)
                ans.push_back(a[i]);
 
            Print(ans);
            return;
        }
    }
 
    // Need to re-arrange the array
    else {
 
        // If possible, place at first position
        if (a[1] == a[0] + __gcd(a[pos], a[0])) {
            flag = 0;
            for (int i = n - 1; i > pos + 2; i--) {
 
                // If even after one arrangement its impossible
                // to get the required array
                if (a[i] != a[i - 1] + __gcd(a[i - 1], a[i - 2])) {
                    flag = 1;
                    break;
                }
            }
 
            if (flag == 0 and pos < n - 1) {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 1]
                    != a[pos - 1] + __gcd(a[pos - 1], a[pos - 2]))
                    flag = 1;
            }
 
            if (flag == 0 and pos < n - 2) {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 2]
                    != a[pos + 1] + __gcd(a[pos - 1], a[pos + 1]))
                    flag = 1;
            }
 
            // If it is possible to get the answer
            if (flag == 0) {
                ans.push_back(a[pos]);
                for (int i = 0; i < n; i++)
                    if (i != pos)
                        ans.push_back(a[i]);
 
                Print(ans);
                return;
            }
        }
    }
 
    ans.push_back(-1);
    Print(ans);
}
 
// Driver code
int main()
{
    int a[] = { 4, 6, 2, 8, 8 };
    int n = sizeof(a) / sizeof(a[0]);
 
    Permutation(a, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to find elements of vector
static void Print(Vector<Integer> ans)
{
    for (Integer i : ans)
        System.out.print(i + " ");
}
 
// Function to find the lexicographically largest
// permutation that satisfies the given condition
static void Permutation(int a[], int n)
{
    int flag = 0, pos = 0;
 
    // To store the required ans
    Vector<Integer> ans = new Vector<Integer>();
 
    // Sort the array
    Arrays.sort(a);
 
    for (int i = 2; i < n; i++)
    {
 
        // If need to make arrangement
        if (a[i] != a[i - 1] + __gcd(a[i - 1],
                                     a[i - 2]))
        {
            flag = 1;
            pos = i;
            break;
        }
    }
 
    // If possible then check for lexicographically
    // larger permutation (if any possible)
    if (flag == 0)
    {
 
        // If larger arrangement is possible
        if (a[1] == a[0] + __gcd(a[0],
                                 a[n - 1]))
        {
            ans.add(a[n - 1]);
            for (int i = 0; i < n - 1; i++)
                ans.add(a[i]);
 
            Print(ans);
            return;
        }
 
        // If no other arrangement is possible
        else
        {
            for (int i = 0; i < n; i++)
                ans.add(a[i]);
 
            Print(ans);
            return;
        }
    }
 
    // Need to re-arrange the array
    else
    {
 
        // If possible, place at first position
        if (a[1] == a[0] + __gcd(a[pos], a[0]))
        {
            flag = 0;
            for (int i = n - 1; i > pos + 2; i--)
            {
 
                // If even after one arrangement
                // its impossible to get
                // the required array
                if (a[i] != a[i - 1] + __gcd(a[i - 1],
                                             a[i - 2]))
                {
                    flag = 1;
                    break;
                }
            }
 
            if (flag == 0 & pos < n - 1)
            {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 1]
                    != a[pos - 1] + __gcd(a[pos - 1],
                                          a[pos - 2]))
                    flag = 1;
            }
 
            if (flag == 0 & pos < n - 2)
            {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 2]
                    != a[pos + 1] + __gcd(a[pos - 1],
                                          a[pos + 1]))
                    flag = 1;
            }
 
            // If it is possible to get the answer
            if (flag == 0)
            {
                ans.add(a[pos]);
                for (int i = 0; i < n; i++)
                    if (i != pos)
                        ans.add(a[i]);
 
                Print(ans);
                return;
            }
        }
    }
 
    ans.add(-1);
    Print(ans);
}
 
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);    
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 4, 6, 2, 8, 8 };
    int n = a.length;
 
    Permutation(a, n);
    }
}
 
// This code is contributed
// by PrinciRaj1992


Python3




# Python 3 implementation of the approach
from math import gcd
 
# Function to find elements of vector
def Print(ans):
    for i in range(len(ans)):
        print(ans[i], end = " ")
 
# Function to find the lexicographically
# largest permutation that satisfies
# the given condition
def Permutation(a, n):
    flag = 0
 
    # To store the required ans
    ans = []
 
    # Sort the array
    a.sort(reverse = False)
 
    for i in range(2, n, 1):
         
        # If need to make arrangement
        if (a[i] != a[i - 1] +
        gcd(a[i - 1], a[i - 2])):
            flag = 1
            pos = i
            break
 
    # If possible then check for
    # lexicographically larger
    # permutation (if any possible)
    if (flag == 0):
         
        # If larger arrangement is possible
        if (a[1] == a[0] +
        gcd(a[0], a[n - 1])):
            ans.append(a[n - 1])
            for i in range(n - 1):
                ans.append(a[i])
 
            Print(ans)
            return
 
        # If no other arrangement is possible
        else:
            for i in range(n):
                ans.append(a[i])
 
            Print(ans)
            return
 
    # Need to re-arrange the array
    else:
         
        # If possible, place at first position
        if (a[1] == a[0] +
        gcd(a[pos], a[0])):
            flag = 0
            i = n - 1
            while(i > pos + 2):
                 
                # If even after one arrangement its
                # impossible to get the required array
                if (a[i] != a[i - 1] +
                gcd(a[i - 1], a[i - 2])):
                    flag = 1
                    break
 
                i -= 1
             
            if (flag == 0 and pos < n - 1):
                 
                # If it is not possible to get
                # the required array
                if (a[pos + 1] != a[pos - 1] +
                gcd(a[pos - 1], a[pos - 2])):
                    flag = 1
 
            if (flag == 0 and pos < n - 2):
                 
                # If it is not possible to get
                # the required array
                if (a[pos + 2] != a[pos + 1] +
                gcd(a[pos - 1], a[pos + 1])):
                    flag = 1
 
            # If it is possible to get the answer
            if (flag == 0):
                ans.append(a[pos])
                for i in range(n):
                    if (i != pos):
                        ans.append(a[i])
 
                Print(ans)
                return
 
    ans.append(-1)
    Print(ans)
 
# Driver code
if __name__ == '__main__':
    a = [4, 6, 2, 8, 8]
    n = len(a)
 
    Permutation(a, n)
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find elements of vector
static void Print(List<int> ans)
{
    foreach (int i in ans)
        Console.Write(i + " ");
}
 
// Function to find the lexicographically largest
// permutation that satisfies the given condition
static void Permutation(int []a, int n)
{
    int flag = 0, pos = 0;
 
    // To store the required ans
    List<int> ans = new List<int>();
 
    // Sort the array
    Array.Sort(a);
 
    for (int i = 2; i < n; i++)
    {
 
        // If need to make arrangement
        if (a[i] != a[i - 1] + __gcd(a[i - 1],
                                     a[i - 2]))
        {
            flag = 1;
            pos = i;
            break;
        }
    }
 
    // If possible then check for lexicographically
    // larger permutation (if any possible)
    if (flag == 0)
    {
 
        // If larger arrangement is possible
        if (a[1] == a[0] + __gcd(a[0],
                                 a[n - 1]))
        {
            ans.Add(a[n - 1]);
            for (int i = 0; i < n - 1; i++)
                ans.Add(a[i]);
 
            Print(ans);
            return;
        }
 
        // If no other arrangement is possible
        else
        {
            for (int i = 0; i < n; i++)
                ans.Add(a[i]);
 
            Print(ans);
            return;
        }
    }
 
    // Need to re-arrange the array
    else
    {
 
        // If possible, place at first position
        if (a[1] == a[0] + __gcd(a[pos], a[0]))
        {
            flag = 0;
            for (int i = n - 1; i > pos + 2; i--)
            {
 
                // If even after one arrangement
                // its impossible to get
                // the required array
                if (a[i] != a[i - 1] + __gcd(a[i - 1],
                                             a[i - 2]))
                {
                    flag = 1;
                    break;
                }
            }
 
            if (flag == 0 & pos < n - 1)
            {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 1]
                    != a[pos - 1] + __gcd(a[pos - 1],
                                          a[pos - 2]))
                    flag = 1;
            }
 
            if (flag == 0 & pos < n - 2)
            {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 2]
                    != a[pos + 1] + __gcd(a[pos - 1],
                                          a[pos + 1]))
                    flag = 1;
            }
 
            // If it is possible to get the answer
            if (flag == 0)
            {
                ans.Add(a[pos]);
                for (int i = 0; i < n; i++)
                    if (i != pos)
                        ans.Add(a[i]);
 
                Print(ans);
                return;
            }
        }
    }
 
    ans.Add(-1);
    Print(ans);
}
 
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);    
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 4, 6, 2, 8, 8 };
    int n = a.Length;
 
    Permutation(a, n);
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation of the approach
 
 
// Function to find elements of vector
function Print(ans) {
    for (let i of ans)
        document.write(i + " ");
}
 
// Function to find the lexicographically largest
// permutation that satisfies the given condition
function Permutation(a, n) {
    let flag = 0, pos = 0;
 
    // To store the required ans
    let ans = new Array();
 
    // Sort the array
    a.sort((a, b) => a - b);
 
    for (let i = 2; i < n; i++) {
 
        // If need to make arrangement
        if (a[i] != a[i - 1] + __gcd(a[i - 1],
            a[i - 2])) {
            flag = 1;
            pos = i;
            break;
        }
    }
 
    // If possible then check for lexicographically
    // larger permutation (if any possible)
    if (flag == 0) {
 
        // If larger arrangement is possible
        if (a[1] == a[0] + __gcd(a[0],
            a[n - 1])) {
            ans.push(a[n - 1]);
            for (let i = 0; i < n - 1; i++)
                ans.push(a[i]);
 
            Print(ans);
            return;
        }
 
        // If no other arrangement is possible
        else {
            for (let i = 0; i < n; i++)
                ans.push(a[i]);
 
            Print(ans);
            return;
        }
    }
 
    // Need to re-arrange the array
    else {
 
        // If possible, place at first position
        if (a[1] == a[0] + __gcd(a[pos], a[0])) {
            flag = 0;
            for (let i = n - 1; i > pos + 2; i--) {
 
                // If even after one arrangement
                // its impossible to get
                // the required array
                if (a[i] != a[i - 1] + __gcd(a[i - 1],
                    a[i - 2])) {
                    flag = 1;
                    break;
                }
            }
 
            if (flag == 0 & pos < n - 1) {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 1]
                    != a[pos - 1] + __gcd(a[pos - 1],
                        a[pos - 2]))
                    flag = 1;
            }
 
            if (flag == 0 & pos < n - 2) {
 
                // If it is not possible to get
                // the required array
                if (a[pos + 2]
                    != a[pos + 1] + __gcd(a[pos - 1],
                        a[pos + 1]))
                    flag = 1;
            }
 
            // If it is possible to get the answer
            if (flag == 0) {
                ans.push(a[pos]);
                for (let i = 0; i < n; i++)
                    if (i != pos)
                        ans.push(a[i]);
 
                Print(ans);
                return;
            }
        }
    }
 
    ans.push(-1);
    Print(ans);
}
 
function __gcd(a, b) {
    if (b == 0)
        return a;
    return __gcd(b, a % b);
}
 
// Driver code
 
let a = [4, 6, 2, 8, 8];
let n = a.length;
 
Permutation(a, n);
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output: 

8 2 4 6 8

 

Time complexity: O(NlogN)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments