Friday, January 10, 2025
Google search engine
HomeData Modelling & AILevel with maximum number of nodes using DFS in a N-ary tree

Level with maximum number of nodes using DFS in a N-ary tree

Given a N-ary tree, the task is to print the level with the maximum number of nodes. 

Examples: 

Input : For example, consider the following tree
          1               - Level 1
       /     \
      2       3           - Level 2
    /   \       \
   4     5       6        - Level 3
        /  \     /
       7    8   9         - Level 4


Output : Level-3 and Level-4

Approach:

  • Insert all the connecting nodes to a 2-D vector tree.
  • Run a DFS on the tree such that height[node] = 1 + height[parent]
  • Once DFS traversal is completed, increase the count[] array by 1, for every node’s level.
  • Iterate from the first level to the last level, and find the level with the maximum number of nodes.
  • Re-traverse from the first to the last level, and print all the levels which have the same number of maximum nodes.

Below is the implementation of the above approach. 

C++




// C++ program to print the level
// with maximum number of nodes
 
#include <bits/stdc++.h>
using namespace std;
 
// Function for DFS in a tree
void dfs(int node, int parent, int height[], int vis[],
         vector<int> tree[])
{
    // calculate the level of every node
    height[node] = 1 + height[parent];
 
    // mark every node as visited
    vis[node] = 1;
 
    // iterate in the subtree
    for (auto it : tree[node]) {
 
        // if the node is not visited
        if (!vis[it]) {
 
            // call the dfs function
            dfs(it, node, height, vis, tree);
        }
    }
}
 
// Function to insert edges
void insertEdges(int x, int y, vector<int> tree[])
{
    tree[x].push_back(y);
    tree[y].push_back(x);
}
 
// Function to print all levels
void printLevelswithMaximumNodes(int N, int vis[], int height[])
{
    int mark[N + 1];
    memset(mark, 0, sizeof mark);
 
    int maxLevel = 0;
    for (int i = 1; i <= N; i++) {
 
        // count number of nodes
        // in every level
        if (vis[i])
            mark[height[i]]++;
 
        // find the maximum height of tree
        maxLevel = max(height[i], maxLevel);
    }
 
    int maxi = 0;
 
    for (int i = 1; i <= maxLevel; i++) {
        maxi = max(mark[i], maxi);
    }
 
    // print even number of nodes
    cout << "The levels with maximum number of nodes are: ";
    for (int i = 1; i <= maxLevel; i++) {
        if (mark[i] == maxi)
            cout << i << " ";
    }
}
 
// Driver Code
int main()
{
    // Construct the tree
 
    /* 1
     /  \
    2    3
    / \   \
   4   5   6
      / \  /
     7   8 9  */
 
    const int N = 9;
 
    vector<int> tree[N + 1];
 
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
 
    int height[N + 1];
    int vis[N + 1] = { 0 };
 
    height[0] = 0;
 
    // call the dfs function
    dfs(1, 0, height, vis, tree);
 
    // Function to print
    printLevelswithMaximumNodes(N, vis, height);
 
    return 0;
}


Java




// Java program to print the level
// with maximum number of nodes
import java.util.*;
 
class GFG
{
    static int N = 9;
 
// Function for DFS in a tree
static void dfs(int node, int parent, int height[], int vis[],
        Vector<Integer> tree[])
{
    // calculate the level of every node
    height[node] = 1 + height[parent];
 
    // mark every node as visited
    vis[node] = 1;
 
    // iterate in the subtree
    for (int it : tree[node])
    {
 
        // if the node is not visited
        if (vis[it] != 1)
        {
 
            // call the dfs function
            dfs(it, node, height, vis, tree);
        }
    }
}
 
// Function to insert edges
static void insertEdges(int x, int y, Vector<Integer> tree[])
{
    tree[x].add(y);
    tree[y].add(x);
}
 
// Function to print all levels
static void printLevelswithMaximumNodes(int N, int vis[], int height[])
{
    int []mark = new int[N + 1];
 
    int maxLevel = 0;
    for (int i = 1; i <= N; i++) {
 
        // count number of nodes
        // in every level
        if (vis[i] == 1)
            mark[height[i]]++;
 
        // find the maximum height of tree
        maxLevel = Math.max(height[i], maxLevel);
    }
 
    int maxi = 0;
 
    for (int i = 1; i <= maxLevel; i++)
    {
        maxi = Math.max(mark[i], maxi);
    }
 
    // print even number of nodes
    System.out.print("The levels with maximum number of nodes are: ");
    for (int i = 1; i <= maxLevel; i++)
    {
        if (mark[i] == maxi)
            System.out.print(i+ " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    // Construct the tree
 
    /* 1
    / \
    2 3
    / \ \
4 5 6
    / \ /
    7 8 9 */
 
     
 
    Vector<Integer> []tree = new Vector[N + 1];
    for(int i= 0; i < N + 1; i++)
        tree[i] = new Vector<Integer>();
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
 
    int height[] = new int[N + 1];
    int vis[] = new int[N + 1];
 
    height[0] = 0;
 
    // call the dfs function
    dfs(1, 0, height, vis, tree);
 
    // Function to print
    printLevelswithMaximumNodes(N, vis, height);
 
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to print the level
# with the maximum number of nodes
 
# Function for DFS in a tree
def dfs(node, parent, height, vis, tree):
 
    # calculate the level of every node
    height[node] = 1 + height[parent]
 
    # mark every node as visited
    vis[node] = 1
 
    # iterate in the subtree
    for it in tree[node]:
 
        # if the node is not visited
        if vis[it] == 0:
 
            # call the dfs function
            dfs(it, node, height, vis, tree)
         
# Function to insert edges
def insertEdges(x, y, tree):
 
    tree[x].append(y)
    tree[y].append(x)
 
# Function to print all levels
def printLevelswithMaximumNodes(N, vis, height):
 
    mark = [0] * (N + 1)
 
    maxLevel = 0
    for i in range (1, N + 1):
 
        # count number of nodes
        # in every level
        if vis[i] == 1:
            mark[height[i]] += 1
 
        # find the maximum height of tree
        maxLevel = max(height[i], maxLevel)
     
    maxi = 0
 
    for i in range(1, maxLevel + 1):
        maxi = max(mark[i], maxi)
     
    # print even number of nodes
    print("The levels with maximum number",
                "of nodes are:", end = " ")
    for i in range(1, maxLevel + 1):
        if mark[i] == maxi:
            print(i, end = " ")
 
# Driver Code
if __name__ == "__main__":
     
    # Construct the tree
    N = 9
 
    # Create an empty 2-D list
    tree = [[] for i in range(N + 1)]
 
    insertEdges(1, 2, tree)
    insertEdges(1, 3, tree)
    insertEdges(2, 4, tree)
    insertEdges(2, 5, tree)
    insertEdges(5, 7, tree)
    insertEdges(5, 8, tree)
    insertEdges(3, 6, tree)
    insertEdges(6, 9, tree)
 
    height = [None] * (N + 1)
    vis = [0] * (N + 1)
 
    height[0] = 0
 
    # call the dfs function
    dfs(1, 0, height, vis, tree)
 
    # Function to print
    printLevelswithMaximumNodes(N, vis, height)
     
# This code is contributed
# by Rituraj Jain


C#




// C# program to print the level
// with maximum number of nodes
using System;
using System.Collections.Generic;
 
public class GFG
{
    static int N = 9;
  
// Function for DFS in a tree
static void dfs(int node, int parent, int []height, int []vis,
        List<int> []tree)
{
    // calculate the level of every node
    height[node] = 1 + height[parent];
  
    // mark every node as visited
    vis[node] = 1;
  
    // iterate in the subtree
    foreach (int it in tree[node])
    {
  
        // if the node is not visited
        if (vis[it] != 1)
        {
  
            // call the dfs function
            dfs(it, node, height, vis, tree);
        }
    }
}
  
// Function to insert edges
static void insertEdges(int x, int y, List<int> []tree)
{
    tree[x].Add(y);
    tree[y].Add(x);
}
  
// Function to print all levels
static void printLevelswithMaximumNodes(int N, int []vis, int []height)
{
    int []mark = new int[N + 1];
  
    int maxLevel = 0;
    for (int i = 1; i <= N; i++) {
  
        // count number of nodes
        // in every level
        if (vis[i] == 1)
            mark[height[i]]++;
  
        // find the maximum height of tree
        maxLevel = Math.Max(height[i], maxLevel);
    }
  
    int maxi = 0;
  
    for (int i = 1; i <= maxLevel; i++)
    {
        maxi = Math.Max(mark[i], maxi);
    }
  
    // print even number of nodes
    Console.Write("The levels with maximum number of nodes are: ");
    for (int i = 1; i <= maxLevel; i++)
    {
        if (mark[i] == maxi)
            Console.Write(i+ " ");
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    // Construct the tree
  
    /* 1
    / \
    2 3
    / \ \
4 5 6
    / \ /
    7 8 9 */
  
      
  
    List<int> []tree = new List<int>[N + 1];
    for(int i= 0; i < N + 1; i++)
        tree[i] = new List<int>();
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
  
    int []height = new int[N + 1];
    int []vis = new int[N + 1];
  
    height[0] = 0;
  
    // call the dfs function
    dfs(1, 0, height, vis, tree);
  
    // Function to print
    printLevelswithMaximumNodes(N, vis, height);
  
}
}
  
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
    // JavaScript program to print the level
    // with maximum number of nodes
     
    let N = 9;
     
    let tree = new Array(N + 1);
   
      let height = new Array(N + 1);
    height.fill(0);
    let vis = new Array(N + 1);
    vis.fill(0);
     
    // Function for DFS in a tree
    function dfs(node, parent, tree)
    {
        // calculate the level of every node
        height[node] = 1 + height[parent];
 
        // mark every node as visited
        vis[node] = 1;
 
        // iterate in the subtree
        for (let it = 0; it < tree[node].length; it++)
        {
 
            // if the node is not visited
            if (vis[tree[node][it]] != 1)
            {
 
                // call the dfs function
                dfs(tree[node][it], node, tree);
            }
        }
    }
 
    // Function to insert edges
    function insertEdges(x, y, tree)
    {
        tree[x].push(y);
        tree[y].push(x);
    }
 
    // Function to print all levels
    function printLevelswithMaximumNodes(N)
    {
        let mark = new Array(N + 1);
        mark.fill(0);
 
        let maxLevel = 0;
        for (let i = 1; i <= N; i++) {
 
            // count number of nodes
            // in every level
            if (vis[i] == 1)
                mark[height[i]]++;
 
            // find the maximum height of tree
            maxLevel = Math.max(height[i], maxLevel);
        }
 
        let maxi = 0;
 
        for (let i = 1; i <= maxLevel; i++)
        {
            maxi = Math.max(mark[i], maxi);
        }
 
        // print even number of nodes
        document.write(
        "The levels with maximum number of nodes are: "
        );
        for (let i = 1; i <= maxLevel; i++)
        {
            if (mark[i] == maxi)
                document.write(i+ " ");
        }
    }
     
    // Construct the tree
   
    /* 1
    / \
    2 3
    / \ \
4 5 6
    / \ /
    7 8 9 */
   
    for(let i= 0; i < N + 1; i++)
    {
        tree[i] = [];
    }
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
   
    height[0] = 0;
   
    // call the dfs function
    dfs(1, 0, tree);
   
    // Function to print
    printLevelswithMaximumNodes(N);
 
</script>


Output

The levels with maximum number of nodes are: 3 4 

Complexity Analysis:

  • Time Complexity: O(N), as we are using recursion for traversing all the nodes, though we are using a for loop to traverse all the N nodes, but we are calling the function only if the node is node visited therefore the effective time complexity will be O(N).
  • Auxiliary Space: O(N), as we are using extra space for an array to keep track of the visited nodes.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments