Friday, October 3, 2025
HomeData Modelling & AILength of the longest subsequence such that xor of adjacent elements is...

Length of the longest subsequence such that xor of adjacent elements is non-decreasing

Given a sequence arr of N positive integers, the task is to find the length of the longest subsequence such that xor of adjacent integers in the subsequence must be non-decreasing.

Examples: 

Input: N = 8, arr = {1, 100, 3, 64, 0, 5, 2, 15} 
Output:
The subsequence of maximum length is {1, 3, 0, 5, 2, 15} 
with XOR of adjacent elements as {2, 3, 5, 7, 13}
Input: N = 3, arr = {1, 7, 10} 
Output:
The subsequence of maximum length is {1, 3, 7} 
with XOR of adjacent elements as {2, 4}. 

Approach: 

  • This problem can be solved using dynamic programming where dp[i] will store the length of the longest valid subsequence that ends at index i.
  • First, store the xor of all the pairs of elements i.e. arr[i] ^ arr[j] and the pair (i, j) also and then sort them according to the value of xor as they need to be non-decreasing.
  • Now if the pair (i, j) is considered then the length of the longest subsequence that ends at j will be max(dp[j], 1 + dp[i]). In this way, calculate the maximum possible value of dp[] array for each position and then take the maximum of them.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the longest
// subsequence such that the XOR of adjacent
// elements in the subsequence must
// be non-decreasing
int LongestXorSubsequence(int arr[], int n)
{
 
    vector<pair<int, pair<int, int> > > v;
 
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Computing xor of all the pairs
            // of elements and store them
            // along with the pair (i, j)
            v.push_back(make_pair(arr[i] ^ arr[j],
                                  make_pair(i, j)));
        }
    }
 
    // Sort all possible xor values
    sort(v.begin(), v.end());
 
    int dp[n];
 
    // Initialize the dp array
    for (int i = 0; i < n; i++) {
        dp[i] = 1;
    }
 
    // Calculating the dp array
    // for each possible position
    // and calculating the max length
    // that ends at a particular index
    for (auto i : v) {
        dp[i.second.second]
            = max(dp[i.second.second],
                  1 + dp[i.second.first]);
    }
 
    int ans = 1;
 
    // Taking maximum of all position
    for (int i = 0; i < n; i++)
        ans = max(ans, dp[i]);
 
    return ans;
}
 
// Driver code
int main()
{
 
    int arr[] = { 2, 12, 6, 7, 13, 14, 8, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << LongestXorSubsequence(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
import java.util.*;
import java.util.stream.Collectors;
 
class GFG {
    // Function to find the length of the longest
    // subsequence such that the XOR of adjacent
    // elements in the subsequence must
    // be non-decreasing
    static int LongestXorSubsequence(int[] arr, int n)
    {
 
        List<int[]> v = new ArrayList<>();
 
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // Computing xor of all the pairs
                // of elements and store them
                // along with the pair (i, j)
                int[] l1 = { arr[i] ^ arr[j], i, j };
                v.add(l1);
            }
        }
 
        // Sort all possible xor values
        Comparator<int[]> byFirstElement
            = (int[] a, int[] b) -> a[0] - b[0];
 
        List<int[]> v1 = v.stream()
                             .sorted(byFirstElement)
                             .collect(Collectors.toList());
 
        int[] dp = new int[n];
 
        // Initialize the dp array
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
        }
 
        // Calculating the dp array
        // for each possible position
        // and calculating the max length
        // that ends at a particular index
        Iterator<int[]> iter = v1.iterator();
        while (iter.hasNext()) {
            int[] list = iter.next();
            dp[list[2]]
                = Math.max(dp[list[2]], 1 + dp[list[1]]);
        }
 
        int ans = 1;
 
        // Taking maximum of all position
        for (int i = 0; i < n; i++)
            ans = Math.max(ans, dp[i]);
 
        return ans;
    }
    public static void main(String[] args)
    {
        // Driver code
        int[] arr = { 2, 12, 6, 7, 13, 14, 8, 6 };
        int n = arr.length;
 
        System.out.println(LongestXorSubsequence(arr, n));
    }
}
 
// this code is contributed by phasing17


Python3




# Python3 implementation of the approach
 
# Function to find the length of the longest
# subsequence such that the XOR of adjacent
# elements in the subsequence must
# be non-decreasing
def LongestXorSubsequence(arr, n):
 
    v = []
 
    for i in range(0, n):
        for j in range(i + 1, n):
 
             # Computing xor of all the pairs
            # of elements and store them
            # along with the pair (i, j)
            v.append([(arr[i] ^ arr[j]), (i, j)])
 
        # v.push_back(make_pair(arr[i] ^ arr[j], make_pair(i, j)))
         
    # Sort all possible xor values
    v.sort()
     
    # Initialize the dp array
    dp = [1 for x in range(88)]
 
    # Calculating the dp array
    # for each possible position
    # and calculating the max length
    # that ends at a particular index
    for a, b in v:
        dp[b[1]] = max(dp[b[1]], 1 + dp[b[0]])
     
    ans = 1
 
    # Taking maximum of all position
    for i in range(0, n):
        ans = max(ans, dp[i])
 
    return ans
 
# Driver code
arr = [ 2, 12, 6, 7, 13, 14, 8, 6 ]
n = len(arr)
print(LongestXorSubsequence(arr, n))
 
# This code is contributed by Sanjit Prasad


C#




// C# implementation of the approach
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to find the length of the longest
  // subsequence such that the XOR of adjacent
  // elements in the subsequence must
  // be non-decreasing
  static int LongestXorSubsequence(int[] arr, int n)
  {
 
    List<int[]> v = new List<int[]>();
 
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
 
        // Computing xor of all the pairs
        // of elements and store them
        // along with the pair (i, j)
        int[] l1 = { arr[i] ^ arr[j], i, j };
        v.Add(l1);
      }
    }
 
    // Sorting the array by First Value
    List<int[]> v1 = v.OrderBy(a => a[0])
      .ThenBy(a => a[1])
      .ToList();
 
    int[] dp = new int[n];
 
    // Initialize the dp array
    for (int i = 0; i < n; i++) {
      dp[i] = 1;
    }
 
    // Calculating the dp array
    // for each possible position
    // and calculating the max length
    // that ends at a particular index
    foreach(var list in v1) dp[list[2]]
      = Math.Max(dp[list[2]], 1 + dp[list[1]]);
 
    int ans = 1;
 
    // Taking maximum of all position
    for (int i = 0; i < n; i++)
      ans = Math.Max(ans, dp[i]);
 
    return ans;
  }
  public static void Main(string[] args)
  {
    // Driver code
    int[] arr = { 2, 12, 6, 7, 13, 14, 8, 6 };
    int n = arr.Length;
 
    Console.WriteLine(LongestXorSubsequence(arr, n));
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
// Javascript implementation of the approach
 
// Function to find the length of the longest
// subsequence such that the XOR of adjacent
// elements in the subsequence must
// be non-decreasing
function LongestXorSubsequence(arr, n) {
 
    let v = [];
 
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
 
            // Computing xor of all the pairs
            // of elements and store them
            // along with the pair (i, j)
            v.push([arr[i] ^ arr[j], [i, j]]);
        }
    }
 
    // Sort all possible xor values
    v.sort((a, b) => a[0] - b[0]);
 
    let dp = new Array(n);
 
    // Initialize the dp array
    for (let i = 0; i < n; i++) {
        dp[i] = 1;
    }
 
    // Calculating the dp array
    // for each possible position
    // and calculating the max length
    // that ends at a particular index
    for (let i of v) {
        dp[i[1][1]]
            = Math.max(dp[i[1][1]],
                1 + dp[i[1][0]]);
    }
 
    let ans = 1;
 
    // Taking maximum of all position
    for (let i = 0; i < n; i++)
        ans = Math.max(ans, dp[i]);
 
    return ans;
}
 
// Driver code
let arr = [2, 12, 6, 7, 13, 14, 8, 6];
let n = arr.length;
 
document.write(LongestXorSubsequence(arr, n));
 
// This code is contributed by _saurabh_jaiswal.
</script>


Output

5

Time Complexity: O(N* N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32331 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11868 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11929 POSTS0 COMMENTS
Shaida Kate Naidoo
6818 POSTS0 COMMENTS
Ted Musemwa
7080 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS