Friday, December 27, 2024
Google search engine
HomeData Modelling & AILength of the longest subarray whose Bitwise XOR is K

Length of the longest subarray whose Bitwise XOR is K

Given an array arr[] of size N and an integer K, the task is to find the length of the longest subarray having Bitwise XOR of all its elements equal to K.

Examples:

Input: arr[] = { 1, 2, 4, 7, 2 }, K = 1
Output: 3
Explanation: 
Subarray having Bitwise XOR equal to K(= 1) are { { 1 }, { 2, 4, 7 }, { 1 } }.
Therefore, the length of longest subarray having bitwise XOR equal to K(= 1) is 3

Input: arr[] = { 2, 5, 6, 1, 0, 3, 5, 6 }, K = 4
Output: 6
Explanation:
Subarray having Bitwise XOR equal to K(= 4) are { { 6, 1, 0, 3 }, { 5, 6, 1, 0, 3, 5 } }.
Therefore, the length of longest subarray having bitwise XOR equal to K(= 4) is 6.

Naive Approach

The idea is to generate all subarrays and find that subarray whose bitwise XOR of all elements is equal to K and has a maximum length

 Steps to Implement:

  • Initialize a variable “ans” with 0 because if no such subarray exists then it will be the answer
  • Run two for loops from 0 to N-1 to generate all subarray
  • For each subarray find the XOR of all elements and its length
  • If any XOR value got equal to K then update “ans” as the maximum of “ans” and the length of that subarray
  • In the last print/return value in ans

Code-

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the longest
// subarray whose bitwise XOR is equal to K
int LongestLenXORK(int arr[], int N, int K)
{
    //To store final answer
    int ans=0;
     
    //Find all subarray
    for(int i=0;i<N;i++){
        //To store length of subarray
        int length=0;
        //To store XOR of all elements of subarray
        int temp=0;
        for(int j=i;j<N;j++){
            temp=temp^arr[j];
            length++;
             
            //When XOR of all elements of subarray equal to K
            if(temp==K){
                //Update ans
                ans=max(ans,length);
            }
        }
    }
     
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 4, 7, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 1;
    cout<< LongestLenXORK(arr, N, K);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG {
 
    // Function to find the length of the longest
    // subarray whose bitwise XOR is equal to K
    static int LongestLenXORK(int[] arr, int N, int K)
    {
        // To store the final answer
        int ans = 0;
 
        // Find all subarrays
        for (int i = 0; i < N; i++) {
            // To store the length of the subarray
            int length = 0;
            // To store XOR of all elements of the subarray
            int temp = 0;
            for (int j = i; j < N; j++) {
                temp = temp ^ arr[j];
                length++;
 
                // When XOR of all elements of subarray is
                // equal to K
                if (temp == K) {
                    // Update ans
                    ans = Math.max(ans, length);
                }
            }
        }
 
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 1, 2, 4, 7, 2 };
        int N = arr.length;
        int K = 1;
        System.out.println(LongestLenXORK(arr, N, K));
    }
}


Python3




# Python program to implement the above approach
 
# Function to find the length of the longest
# subarray whose bitwise XOR is equal to K
def LongestLenXORK(arr, N, K):
    # To store final answer
    ans = 0
 
    # Find all subarray
    for i in range(N):
        # To store length of subarray
        length = 0
        # To store XOR of all elements of subarray
        temp = 0
        for j in range(i, N):
            temp ^= arr[j]
            length += 1
 
            # When XOR of all elements of subarray equal to K
            if temp == K:
                # Update ans
                ans = max(ans, length)
 
    return ans
 
# Driver Code
if __name__ == '__main__':
    arr = [1, 2, 4, 7, 2]
    N = len(arr)
    K = 1
    print(LongestLenXORK(arr, N, K))


C#




using System;
 
class GFG
{
    // Function to find the length of the longest
    // subarray whose bitwise XOR is equal to K
    static int LongestLenXORK(int[] arr, int N, int K)
    {
        // To store the final answer
        int ans = 0;
 
        // Find all subarrays
        for (int i = 0; i < N; i++)
        {
            // To store the length of the subarray
            int length = 0;
             
            // To store the XOR of all elements of the subarray
            int temp = 0;
 
            for (int j = i; j < N; j++)
            {
                temp ^= arr[j];
                length++;
 
                // When XOR of all elements of the subarray is equal to K
                if (temp == K)
                {
                    // Update ans
                    ans = Math.Max(ans, length);
                }
            }
        }
 
        return ans;
    }
 
    // Driver Code
    static void Main(string[] args)
    {
        int[] arr = { 1, 2, 4, 7, 2 };
        int N = arr.Length;
        int K = 1;
        Console.WriteLine(LongestLenXORK(arr, N, K));
    }
}
 
// This code is contributed by Dwaipayan Bandyopadhyay


Javascript




// Javascript program to implement
// the above approach
 
// Function to find the length of the longest
// subarray whose bitwise XOR is equal to K
function LongestLenXORK(arr, N, K) {
 //To store final answer
    let ans = 0;
//Find all subarray
    for (let i = 0; i < N; i++) {
        let length = 0;
        //To store XOR of all elements of subarray
        let temp = 0;
        for (let j = i; j < N; j++) {
            temp ^= arr[j];
            length += 1;
//When XOR of all elements of subarray equal to K
            if (temp === K) {
            //Update ans
                ans = Math.max(ans, length);
            }
        }
    }
    return ans;
}
 
// Driver Code
const arr = [1, 2, 4, 7, 2];
const N = arr.length;
const K = 1;
console.log(LongestLenXORK(arr, N, K));


Output-

3

Time Complexity: O(N2), because of two nested loops from 0 to N-1
Auxiliary Space: O(1), because no extra space has been used

Approach: The problem can be solved using Hashing and Prefix Sum technique. Following are the observation:

a1 ^ a2 ^ a3 ^ ….. ^ an = K

=> a2 ^ a3 ^ ….. ^ an ^ K = a1

Follow the steps below to solve the problem:

  • Initialize a variable, say prefixXOR, to store the Bitwise XOR of all elements up to the ith index of the given array.
  • Initialize a Map, say mp, to store the indices of the computed prefix XORs of the array.
  • Initialize a variable, say maxLen, to store the length of the longest subarray whose Bitwise XOR is equal to K.
  • Traverse the array arr[] using variable i. For every ith index, update prefixXOR = prefixXOR ^ arr[i] and check if (prefixXOR ^ K) is present in the Map or not. If found to be true, then update maxLen = max(maxLen, i – mp[prefixXOR ^ K]).
  • If prefixXOR is not present in the Map, then insert prefixXOR into the Map.
  • Finally, print the value of maxLen.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the longest
// subarray whose bitwise XOR is equal to K
int LongestLenXORK(int arr[], int N, int K)
{
     
    // Stores prefix XOR
    // of the array
    int prefixXOR = 0;
 
    // Stores length of longest subarray
    // having bitwise XOR equal to K
    int maxLen = 0;
 
    // Stores index of prefix
    // XOR of the array
    unordered_map<int, int> mp;
     
     
    // Insert 0 into the map
    mp[0] = -1;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Update prefixXOR
        prefixXOR ^= arr[i];
 
        // If (prefixXOR ^ K) present
        // in the map
        if (mp.count(prefixXOR ^ K)) {
 
            // Update maxLen
            maxLen = max(maxLen,
               (i - mp[prefixXOR ^ K]));
        }
         
        // If prefixXOR not present
        // in the Map
        if (!mp.count(prefixXOR)) {
 
            // Insert prefixXOR
            // into the map
            mp[prefixXOR] = i;
        }
    }
     
    return maxLen;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 4, 7, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 1;
    cout<< LongestLenXORK(arr, N, K);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Function to find the length of the longest
// subarray whose bitwise XOR is equal to K
static int LongestLenXORK(int arr[],
                          int N, int K)
{
     
    // Stores prefix XOR
    // of the array
    int prefixXOR = 0;
 
    // Stores length of longest subarray
    // having bitwise XOR equal to K
    int maxLen = 0;
 
    // Stores index of prefix
    // XOR of the array
    HashMap<Integer,
            Integer> mp = new HashMap<Integer,
                                      Integer>();
                                       
    // Insert 0 into the map
    mp.put(0, -1);
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Update prefixXOR
        prefixXOR ^= arr[i];
 
        // If (prefixXOR ^ K) present
        // in the map
        if (mp.containsKey(prefixXOR ^ K))
        {
             
            // Update maxLen
            maxLen = Math.max(maxLen,
               (i - mp.get(prefixXOR ^ K)));
        }
         
        // If prefixXOR not present
        // in the Map
        if (!mp.containsKey(prefixXOR))
        {
             
            // Insert prefixXOR
            // into the map
            mp.put(prefixXOR, i);
        }
    }
    return maxLen;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 4, 7, 2 };
    int N = arr.length;
    int K = 1;
     
    System.out.print(LongestLenXORK(arr, N, K));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to implement
# the above approach
 
# Function to find the length of the longest
# subarray whose bitwise XOR is equal to K
def LongestLenXORK(arr, N, K):
     
    # Stores prefix XOR
    # of the array
    prefixXOR = 0
 
    # Stores length of longest subarray
    # having bitwise XOR equal to K
    maxLen = 0
 
    # Stores index of prefix
    # XOR of the array
    mp = {}
 
    # Insert 0 into the map
    mp[0] = -1
 
    # Traverse the array
    for i in range(N):
         
        # Update prefixXOR
        prefixXOR ^= arr[i]
 
        # If (prefixXOR ^ K) present
        # in the map
        if (prefixXOR ^ K) in mp:
             
            # Update maxLen
            maxLen = max(maxLen,
                        (i - mp[prefixXOR ^ K]))
 
        # If prefixXOR not present
        # in the Map
        else:
             
            # Insert prefixXOR
            # into the map
            mp[prefixXOR] = i
       
    return maxLen
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 4, 7, 2 ]
    N = len(arr)
    K = 1
     
    print(LongestLenXORK(arr, N, K))
 
# This code is contributed by AnkThon


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
// Function to find the length of the longest
// subarray whose bitwise XOR is equal to K
static int longestLenXORK(int []arr,
                          int N, int K)
{
     
    // Stores prefix XOR
    // of the array
    int prefixXOR = 0;
 
    // Stores length of longest subarray
    // having bitwise XOR equal to K
    int maxLen = 0;
 
    // Stores index of prefix
    // XOR of the array
    Dictionary<int,
            int> mp = new Dictionary<int,
                                      int>();
                                       
    // Insert 0 into the map
    mp.Add(0, -1);
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Update prefixXOR
        prefixXOR ^= arr[i];
 
        // If (prefixXOR ^ K) present
        // in the map
        if (mp.ContainsKey(prefixXOR ^ K))
        {
             
            // Update maxLen
            maxLen = Math.Max(maxLen,
               (i - mp[prefixXOR ^ K]));
        }
         
        // If prefixXOR not present
        // in the Map
        if (!mp.ContainsKey(prefixXOR))
        {
             
            // Insert prefixXOR
            // into the map
            mp.Add(prefixXOR, i);
        }
    }
    return maxLen;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = {1, 2, 4, 7, 2};
    int N = arr.Length;
    int K = 1;
     
    Console.Write(longestLenXORK(arr, N, K));
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
// Function to find the length of the longest
// subarray whose bitwise XOR is equal to K
function LongestLenXORK(arr, N, K)
{
     
    // Stores prefix XOR
    // of the array
    var prefixXOR = 0;
 
    // Stores length of longest subarray
    // having bitwise XOR equal to K
    var maxLen = 0;
 
    // Stores index of prefix
    // XOR of the array
    var mp = new Map();
     
     
    // Insert 0 into the map
    mp.set(0, -1);
 
    // Traverse the array
    for (var i = 0; i < N; i++) {
 
        // Update prefixXOR
        prefixXOR ^= arr[i];
 
        // If (prefixXOR ^ K) present
        // in the map
        if (mp.has(prefixXOR ^ K)) {
 
            // Update maxLen
            maxLen = Math.max(maxLen,
               (i - mp.get(prefixXOR ^ K)));
        }
         
        // If prefixXOR not present
        // in the Map
        if (!mp.has(prefixXOR)) {
 
            // Insert prefixXOR
            // into the map
            mp.set(prefixXOR, i);
        }
    }
     
    return maxLen;
}
 
// Driver Code
var arr = [1, 2, 4, 7, 2];
var N =  arr.length;
var K = 1;
document.write( LongestLenXORK(arr, N, K));
 
</script>


Output

3





Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments