Given an array arr[], the task is to find the length of the longest subsequence of the array arr[] such that all adjacent elements in the subsequence are different.
Examples:
Input: arr[] = {4, 2, 3, 4, 3}
Output: 5
Explanation:
The longest subsequence where no two adjacent elements are equal is {4, 2, 3, 4, 3}. Length of the subsequence is 5.Input: arr[] = {7, 8, 1, 2, 2, 5, 5, 1}
Output: 6
Explanation: Longest subsequence where no two adjacent elements are equal is {7, 8, 1, 2, 5, 1}. Length of the subsequence is 5.
Naive Approach: The simplest approach is to generate all possible subsequence of the given array and print the maximum length of that subsequence having all adjacent elements different.
Time Complexity: O(2N)
Auxiliary Space: O(1)
Efficient Approach: Follow the steps below to solve the problem:
- Initialize count to 1 to store the length of the longest subsequence.
- Traverse the array over the indices [1, N – 1] and for each element, check if the current element is equal to the previous element or not. If found to be not equal, then increment count by 1.
- After completing the above steps, print the value of count as the maximum possible length of subsequence.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function that finds the length of // longest subsequence having different // adjacent elements void longestSubsequence( int arr[], int N) { // Stores the length of the // longest subsequence int count = 1; // Traverse the array for ( int i = 1; i < N; i++) { // If previous and current // element are not same if (arr[i] != arr[i - 1]) { // Increment the count count++; } } // Print the maximum length cout << count << endl; } // Driver Code int main() { int arr[] = { 7, 8, 1, 2, 2, 5, 5, 1 }; // Size of Array int N = sizeof (arr) / sizeof (arr[0]); // Function Call longestSubsequence(arr, N); return 0; } |
Java
// Java program for the // above approach import java.util.*; class GFG{ // Function that finds the length of // longest subsequence having different // adjacent elements static void longestSubsequence( int arr[], int N) { // Stores the length of the // longest subsequence int count = 1 ; // Traverse the array for ( int i = 1 ; i < N; i++) { // If previous and current // element are not same if (arr[i] != arr[i - 1 ]) { // Increment the count count++; } } // Print the maximum length System.out.println(count); } // Driver Code public static void main(String args[]) { int arr[] = { 7 , 8 , 1 , 2 , 2 , 5 , 5 , 1 }; // Size of Array int N = arr.length; // Function Call longestSubsequence(arr, N); } } // This code is contributed by bgangwar59 |
Python3
# Python3 program for the above approach # Function that finds the length of # longest subsequence having different # adjacent elements def longestSubsequence(arr, N): # Stores the length of the # longest subsequence count = 1 # Traverse the array for i in range ( 1 , N, 1 ): # If previous and current # element are not same if (arr[i] ! = arr[i - 1 ]): # Increment the count count + = 1 # Print the maximum length print (count) # Driver Code if __name__ = = '__main__' : arr = [ 7 , 8 , 1 , 2 , 2 , 5 , 5 , 1 ] # Size of Array N = len (arr) # Function Call longestSubsequence(arr, N) # This code is contributed by ipg2016107 |
C#
// C# program for the // above approach using System; class GFG{ // Function that finds the length of // longest subsequence having different // adjacent elements static void longestSubsequence( int [] arr, int N) { // Stores the length of the // longest subsequence int count = 1; // Traverse the array for ( int i = 1; i < N; i++) { // If previous and current // element are not same if (arr[i] != arr[i - 1]) { // Increment the count count++; } } // Print the maximum length Console.WriteLine(count); } // Driver Code public static void Main() { int [] arr = { 7, 8, 1, 2, 2, 5, 5, 1 }; // Size of Array int N = arr.Length; // Function Call longestSubsequence(arr, N); } } // This code is contributed by susmitakundugoaldanga |
Javascript
<script> // JavaScript program to implement // the above approach // Function that finds the length of // longest subsequence having different // adjacent elements function longestSubsequence(arr, N) { // Stores the length of the // longest subsequence let count = 1; // Traverse the array for (let i = 1; i < N; i++) { // If previous and current // element are not same if (arr[i] != arr[i - 1]) { // Increment the count count++; } } // Print the maximum length document.write(count); } // Driver Code let arr = [7, 8, 1, 2, 2, 5, 5, 1]; // Size of Array let N = arr.length; // Function Call longestSubsequence(arr, N); </script> |
6
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!