Sunday, September 7, 2025
HomeData Modelling & AILength of longest subarray with product greater than or equal to 0

Length of longest subarray with product greater than or equal to 0

Given an array arr[] of N integers, the task is to find the length of the longest subarray whose product is greater than or equals to 0.
Examples: 

Input: arr[] = {-1, 1, 1, -2, 3, 2, -1 } 
Output:
Explanation: 
The longest subarray with product ? 0 = {1, 1, -2, 3, 2, -1} and {-1, 1, 1, -2, 3, 2}. 
Length of each = 6.

Input: arr[] = {-1, -2, -3, -4} 
Output:
Explanation: 
The longest subarray with product ? 0 = {-1, -2, -3, -4}. 
Length = 4. 

Approach:  

  1. Check whether the product of all the elements in the given array is greater than or equals zero or not.
  2. If Yes then, the length of the longest subarray with a product greater than or equals to zero is the length of the array.
  3. If the above statement is not true, then the array contains an odd number of negative elements. In this case, to find the longest subarray do the following: 
    • For each negative element occurs in the array, the subarray to left and right of the current element gives the product which is greater than or equals to 0. Therefore the length of required longest subarray will be:
L = max(L, max(i, N - i - 1))
  • Keep updating the length of the subarray for each negative element found in the array.
  • The value of L is the length of longest subarray with product greater than equals to 0.

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that count the length
// of longest subarray with product
// greater than or equals to zero
int maxLength(int arr[], int N)
{
    int product = 1, len = 0;
 
    for (int i = 0; i < N; i++) {
        product *= arr[i];
    }
 
    // If product is greater than
    // zero, return array size
    if (product >= 0) {
        return N;
    }
 
    // Traverse the array and if
    // any negative element found
    // then update the length of
    // longest subarray with the
    // length of left and right subarray
    for (int i = 0; i < N; i++) {
        if (arr[i] < 0) {
            len = max(len,
                      max(N - i - 1, i));
        }
    }
 
    return len;
}
 
// Driver Code
int main()
{
    int arr[] = { -1, 1, 1, -2, 3, 2, -1 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxLength(arr, N) << endl;
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
public class GFG{
// Function that count the length
// of longest subarray with product
// greater than or equals to zero
    static int maxLength(int arr[], int N)
    {
        int product = 1, len = 0;
     
        for (int i = 0; i < N; i++) {
            product *= arr[i];
        }
     
        // If product is greater than
        // zero, return array size
        if (product >= 0) {
            return N;
        }
     
        // Traverse the array and if
        // any negative element found
        // then update the length of
        // longest subarray with the
        // length of left and right subarray
        for (int i = 0; i < N; i++) {
            if (arr[i] < 0) {
                len = Math.max(len, Math.max(N - i - 1, i));
            }
        }
     
        return len;
    }
     
    // Driver Code
    public static void main(String args[])
    {
        int arr[] = { -1, 1, 1, -2, 3, 2, -1 };
        int N = arr.length;
        System.out.println(maxLength(arr, N));
     
    }
}
 
// This code is contributed by AbhiThakur


Python3




# Python3 implementation of the above approach
 
# Function that count the Length
# of longest subarray with product
# greater than or equals to zero
def maxLength(arr, N):
    product = 1
    Len = 0
 
    for i in arr:
        product *= i
 
    # If product is greater than
    # zero, return array size
    if (product >= 0):
        return N
 
    # Traverse the array and if
    # any negative element found
    # then update the Length of
    # longest subarray with the
    # Length of left and right subarray
    for i in range(N):
        if (arr[i] < 0):
            Len = max(Len,max(N - i - 1, i))
 
    return Len
 
# Driver Code
if __name__ == '__main__':
    arr = [-1, 1, 1, -2, 3, 2, -1]
    N = len(arr)
 
    print(maxLength(arr, N))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the above approach
using System;
 
class GFG{
// Function that count the length
// of longest subarray with product
// greater than or equals to zero
    static int maxLength(int []arr, int N)
    {
        int product = 1, len = 0;
     
        for (int i = 0; i < N; i++) {
            product *= arr[i];
        }
     
        // If product is greater than
        // zero, return array size
        if (product >= 0) {
            return N;
        }
     
        // Traverse the array and if
        // any negative element found
        // then update the length of
        // longest subarray with the
        // length of left and right subarray
        for (int i = 0; i < N; i++) {
            if (arr[i] < 0) {
                len = Math.Max(len, Math.Max(N - i - 1, i));
            }
        }
     
        return len;
    }
     
    // Driver Code
    public static void Main()
    {
        int []arr = { -1, 1, 1, -2, 3, 2, -1 };
        int N = arr.Length;
        Console.WriteLine(maxLength(arr, N));
     
    }
}
 
// This code is contributed by abhaysingh290895


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function that count the length
// of longest subarray with product
// greater than or equals to zero
function maxLength(arr, N)
{
    var product = 1, len = 0;
 
    for (var i = 0; i < N; i++) {
        product *= arr[i];
    }
 
    // If product is greater than
    // zero, return array size
    if (product >= 0) {
        return N;
    }
 
    // Traverse the array and if
    // any negative element found
    // then update the length of
    // longest subarray with the
    // length of left and right subarray
    for (var i = 0; i < N; i++) {
        if (arr[i] < 0) {
            len = Math.max(len,
                      Math.max(N - i - 1, i));
        }
    }
 
    return len;
}
 
// Driver Code
var arr = [ -1, 1, 1, -2, 3, 2, -1 ];
var N = arr.length;
document.write(maxLength(arr, N));
 
// This code is contributed by rutvik_56.
</script>


Output: 

6

 

Time Complexity: O(N), where N is the length of the array.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32271 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6644 POSTS0 COMMENTS
Nicole Veronica
11808 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11871 POSTS0 COMMENTS
Shaida Kate Naidoo
6755 POSTS0 COMMENTS
Ted Musemwa
7030 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS