Given an array arr[] of length N, the task is to find the length of the longest subarray which consists of consecutive numbers in increasing order, from the array.
Examples:
Input: arr[] = {2, 3, 4, 6, 7, 8, 9, 10}
Output: 5
Explanation: Subarray {6, 7, 8, 9, 10} is the longest subarray satisfying the given conditions. Therefore, the required output is 5.Input: arr[] = {4, 5, 1, 2, 3, 4, 9, 10, 11, 12}
Output: 4
Naive Approach: The simplest approach to solve the problem is to traverse the array and for every index i, traverse from over-index and find the length of the longest subarray satisfying the given condition starting from i. Shift i to the index which does not satisfy the condition and check from that index. Finally, print the maximum length of such subarray obtained.
Below is the implementation of the above approach:
C++
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the longest subarray // with increasing contiguous elements int maxiConsecutiveSubarray( int arr[], int N) { // Stores the length of // required longest subarray int maxi = 0; for ( int i = 0; i < N - 1; i++) { // Stores the length of length of longest // such subarray from ith index int cnt = 1, j; for (j = i; j < N; j++) { // If consecutive elements are // increasing and differ by 1 if (arr[j + 1] == arr[j] + 1) { cnt++; } // Otherwise else { break ; } } // Update the longest subarray // obtained so far maxi = max(maxi, cnt); i = j; } // Return the length obtained return maxi; } // Driver Code int main() { int N = 11; int arr[] = { 1, 3, 4, 2, 3, 4, 2, 3, 5, 6, 7 }; cout << maxiConsecutiveSubarray(arr, N); return 0; } |
Java
// Java implementation for the above approach import java.util.*; class GFG{ // Function to find the longest subarray // with increasing contiguous elements public static int maxiConsecutiveSubarray( int arr[], int N) { // Stores the length of // required longest subarray int maxi = 0 ; for ( int i = 0 ; i < N - 1 ; i++) { // Stores the length of length of // longest such subarray from ith // index int cnt = 1 , j; for (j = i; j < N - 1 ; j++) { // If consecutive elements are // increasing and differ by 1 if (arr[j + 1 ] == arr[j] + 1 ) { cnt++; } // Otherwise else { break ; } } // Update the longest subarray // obtained so far maxi = Math.max(maxi, cnt); i = j; } // Return the length obtained return maxi; } // Driver Code public static void main(String args[]) { int N = 11 ; int arr[] = { 1 , 3 , 4 , 2 , 3 , 4 , 2 , 3 , 5 , 6 , 7 }; System.out.println(maxiConsecutiveSubarray(arr, N)); } } // This code is contributed by hemanth gadarla |
Python3
# Python3 implementation for # the above approach # Function to find the longest # subarray with increasing # contiguous elements def maxiConsecutiveSubarray(arr, N): # Stores the length of # required longest subarray maxi = 0 ; for i in range (N - 1 ): # Stores the length of # length of longest such # subarray from ith index cnt = 1 ; for j in range (i, N - 1 ): # If consecutive elements are # increasing and differ by 1 if (arr[j + 1 ] = = arr[j] + 1 ): cnt + = 1 ; # Otherwise else : break ; # Update the longest subarray # obtained so far maxi = max (maxi, cnt); i = j; # Return the length obtained return maxi; # Driver Code if __name__ = = '__main__' : N = 11 ; arr = [ 1 , 3 , 4 , 2 , 3 , 4 , 2 , 3 , 5 , 6 , 7 ]; print (maxiConsecutiveSubarray(arr, N)); # This code is contributed by Rajput-Ji |
C#
// C# implementation for the // above approach using System; class GFG{ // Function to find the longest // subarray with increasing // contiguous elements public static int maxiConsecutiveSubarray( int []arr, int N) { // Stores the length of // required longest subarray int maxi = 0; for ( int i = 0; i < N - 1; i++) { // Stores the length of // length of longest such // subarray from ith index int cnt = 1, j; for (j = i; j < N - 1; j++) { // If consecutive elements are // increasing and differ by 1 if (arr[j + 1] == arr[j] + 1) { cnt++; } // Otherwise else { break ; } } // Update the longest subarray // obtained so far maxi = Math.Max(maxi, cnt); i = j; } // Return the length // obtained return maxi; } // Driver Code public static void Main(String []args) { int N = 11; int []arr = {1, 3, 4, 2, 3, 4, 2, 3, 5, 6, 7}; Console.WriteLine( maxiConsecutiveSubarray(arr, N)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to implement // the above approach // Function to find the longest subarray // with increasing contiguous elements function maxiConsecutiveSubarray(arr, N) { // Stores the length of // required longest subarray let maxi = 0; for (let i = 0; i < N - 1; i++) { // Stores the length of length of // longest such subarray from ith // index let cnt = 1, j; for (j = i; j < N - 1; j++) { // If consecutive elements are // increasing and differ by 1 if (arr[j + 1] == arr[j] + 1) { cnt++; } // Otherwise else { break ; } } // Update the longest subarray // obtained so far maxi = Math.max(maxi, cnt); i = j; } // Return the length obtained return maxi; } // Driver Code let N = 11; let arr = [ 1, 3, 4, 2, 3, 4, 2, 3, 5, 6, 7 ]; document.write(maxiConsecutiveSubarray(arr, N)); </script> |
3
Time Complexity: O(N2)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!