Given a Binary Tree, the task is to find the length of the longest straight path of the given binary tree.
Straight Path is defined as the path that starts from any node and ends at another node in the tree such that the direction of traversal from the source node to the destination node always remains the same i.e., either left or right, without any change in direction that is left->left ->left or right->right->right direction.Â
Examples:
Input:
Output: 2
Explanation:
The path shown in green is the longest straight path from 4 to 6 which is of length 2.Â
Â
Input:
Output: 3
Explanation:
The path shown in green is the longest straight path from 5 to 0 which is of length 3.Â
Â
Approach: The idea is to use the Postorder traversal. Follow the steps below to solve the problem:
- For each node, check the direction of the current Node (either left or right) and check which direction of its child is providing the longest length below it to that node.
- If the direction of the current node and the child giving the longest length is not the same then save the result of that child and pass the length of the other child to its parent.
- Using the above steps find the longest straight path at each node and save the result to print the maximum value among all the straight paths.
- Print the maximum path after the above steps.
Below is the implementation of the above approach:
C++
// C++ program for the above approach Â
#include <bits/stdc++.h> using namespace std; Â
// Structure of a Tree node struct Node { Â Â Â Â int key; Â Â Â Â struct Node *left, *right; }; Â
// Function to create a new node Node* newNode( int key) { Â Â Â Â Node* temp = new Node; Â Â Â Â temp->key = key; Â Â Â Â temp->left = temp->right = NULL; Â Â Â Â return (temp); } Â
// Function to find the longest // straight path in a tree int findPath(Node* root, char name,              int & max_v) {     // Base Case     if (root == NULL) {         return 0;     } Â
    // Recursive call on left child     int left = findPath(root->left,                         'l' , max_v); Â
    // Recursive call on right child     int right = findPath(root->right,                          'r' , max_v); Â
    // Return the maximum straight     // path possible from current node     if (name == 't' ) {         return max(left, right);     } Â
    // Leaf node     if (left == 0 && right == 0) {         return 1;     } Â
    // Executes when either of the     // child is present or both     else { Â
        // Pass the longest value from         // either direction         if (left < right) {             if (name == 'r' )                 return 1 + right; Â
            else {                 max_v = max(max_v, right);                 return 1 + left;             }         }         else {             if (name == 'l' )                 return 1 + left; Â
            else {                 max_v = max(max_v, left);                 return 1 + right;             }         }     }     return 0; } Â
// Driver Code int main() { Â
    // Given Tree     Node* root = newNode(3); Â
    root->left = newNode(3);     root->right = newNode(3); Â
    root->left->right = newNode(2);     root->right->left = newNode(4);     root->right->left->left = newNode(4); Â
    int max_v = max(         findPath(root, 't' , max_v),         max_v); Â
    // Print the maximum length     cout << max_v << "\n" ; } |
Java
// Java program for the above approach import java.util.*; Â
class GFG{ Â Â Â Â Â static int max_v; Â
// Structure of a Tree node static class Node { Â Â Â Â int key; Â Â Â Â Node left, right; }; Â
// Function to create a new node static Node newNode( int key) { Â Â Â Â Node temp = new Node(); Â Â Â Â temp.key = key; Â Â Â Â temp.left = temp.right = null ; Â Â Â Â return (temp); } Â
// Function to find the longest // straight path in a tree static int findPath(Node root, char name) {          // Base Case     if (root == null )     {         return 0 ;     } Â
    // Recursive call on left child     int left = findPath(root.left, 'l' ); Â
    // Recursive call on right child     int right = findPath(root.right, 'r' ); Â
    // Return the maximum straight     // path possible from current node     if (name == 't' )     {         return Math.max(left, right);     } Â
    // Leaf node     if (left == 0 && right == 0 )     {         return 1 ;     } Â
    // Executes when either of the     // child is present or both     else     {                  // Pass the longest value from         // either direction         if (left < right)         {             if (name == 'r' )                 return 1 + right;             else             {                 max_v = Math.max(max_v, right);                 return 1 + left;             }         }         else         {             if (name == 'l' )                 return 1 + left;             else             {                 max_v = Math.max(max_v, left);                 return 1 + right;             }         }     } } Â
// Driver Code public static void main(String[] args) { Â
    // Given Tree     Node root = newNode( 3 ); Â
    root.left = newNode( 3 );     root.right = newNode( 3 );     root.left.right = newNode( 2 );     root.right.left = newNode( 4 );     root.right.left.left = newNode( 4 ); Â
    max_v = Math.max(findPath(root, 't' ),                      max_v); Â
    // Print the maximum length     System.out.print(max_v+ "\n" ); } } Â
// This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach max_v = 0 Â
# Structure of a Tree node class newNode:          def __init__( self , key):                  self .key = key         self .left = None         self .right = None Â
# Function to find the longest # straight path in a tree def findPath(root, name):          global max_v          # Base Case     if (root = = None ):         return 0 Â
    # Recursive call on left child     left = findPath(root.left, 'l' ) Â
    # Recursive call on right child     right = findPath(root.right, 'r' )          # Return the maximum straight     # path possible from current node     if (name = = 't' ):         return max (left, right) Â
    # Leaf node     if (left = = 0 and right = = 0 ):         return 1 Â
    # Executes when either of the     # child is present or both     else :                  # Pass the longest value from         # either direction         if (left < right):             if (name = = 'r' ):                 return 1 + right             else :                 max_v = max (max_v, right)                 return 1 + left         else :             if (name = = 'l' ):                 return 1 + left             else :                 max_v = max (max_v, left)                 return 1 + right                      return 0 Â
def helper(root):          global max_v     temp = max (findPath(root, 't' ), max_v)     print (temp) Â
# Driver Code if __name__ = = '__main__' :          # Given Tree     root = newNode( 3 )     root.left = newNode( 3 )     root.right = newNode( 3 )     root.left.right = newNode( 2 )     root.right.left = newNode( 4 )     root.right.left.left = newNode( 4 )          helper(root) Â
# This code is contributed by ipg2016107 |
C#
// C# program for // the above approach using System; class GFG{ Â Â Â Â Â static int max_v; Â
// Structure of a Tree node public class Node { Â Â public int key; Â Â public Node left, right; }; Â
// Function to create a new node static Node newNode( int key) { Â Â Node temp = new Node(); Â Â temp.key = key; Â Â temp.left = temp.right = null ; Â Â return (temp); } Â
// Function to find the longest // straight path in a tree static int findPath(Node root,                     char name) {   // Base Case   if (root == null )   {     return 0;   } Â
  // Recursive call on left child   int left = findPath(root.left, 'l' ); Â
  // Recursive call on right child   int right = findPath(root.right, 'r' ); Â
  // Return the maximum straight   // path possible from current node   if (name == 't' )   {     return Math.Max(left, right);   } Â
  // Leaf node   if (left == 0 && right == 0)   {     return 1;   } Â
  // Executes when either of the   // child is present or both   else   {     // Pass the longest value from     // either direction     if (left < right)     {       if (name == 'r' )         return 1 + right;       else       {         max_v = Math.Max(max_v, right);         return 1 + left;       }     }     else     {       if (name == 'l' )         return 1 + left;       else       {         max_v = Math.Max(max_v, left);         return 1 + right;       }     }   } } Â
// Driver Code public static void Main(String[] args) {   // Given Tree   Node root = newNode(3); Â
  root.left = newNode(3);   root.right = newNode(3);   root.left.right = newNode(2);   root.right.left = newNode(4);   root.right.left.left = newNode(4); Â
  max_v = Math.Max(findPath(root, 't' ), max_v); Â
  // Print the maximum length   Console.Write(max_v + "\n" ); } } Â
// This code is contributed by 29AjayKumar |
Javascript
       // JavaScript code for the above approach        // Structure of a Tree node        class Node {            constructor(key) {                this .key = key;                this .left = null ;                this .right = null ;            }        } Â
       // Function to create a new node        function newNode(key) {            const temp = new Node(key);            return temp;        } Â
       // Function to find the longest        // straight path in a tree        function findPath(root, name, maxV) {            // Base Case            if (root === null ) {                return 0;            } Â
           // Recursive call on left child            const left = findPath(root.left, 'l' , maxV); Â
           // Recursive call on right child            const right = findPath(root.right, 'r' , maxV); Â
           // Return the maximum straight            // path possible from current node            if (name === 't' ) {                return Math.max(left, right);            } Â
           // Leaf node            if (left === 0 && right === 0) {                return 1;            } Â
           // Executes when either of the            // child is present or both            else {                // Pass the longest value from                // either direction                if (left < right) {                    if (name === 'r' ) return 1 + right;                    else {                        maxV[0] = Math.max(maxV[0], right);                        return 1 + left;                    }                } else {                    if (name === 'l' ) return 1 + left;                    else {                        maxV[0] = Math.max(maxV[0], left);                        return 1 + right;                    }                }            }            return 0;        } Â
       // Driver Code Â
       // Given Tree        const root = newNode(3); Â
       root.left = newNode(3);        root.right = newNode(3); Â
       root.left.right = newNode(2);        root.right.left = newNode(4);        root.right.left.left = newNode(4); Â
       const maxV = [0];        const maxVal = Math.max(            findPath(root, 't' , maxV),            maxV[0]        ); Â
       // Print the maximum length        console.log(maxVal); Â
// This code is contributed by Potta Lokesh. |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!